
Cuiling Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8274422/publications.pdf Version: 2024-02-01

CHUNCL

#	Article	lF	CITATIONS
1	Nanoporous trimetallic PdCuAg alloys as efficient electrocatalysts by all-direction accessibility and synergetic effects. Journal of Materials Chemistry A, 2022, 10, 6569-6575.	5.2	7
2	Mesoporous PdBi nanocages for enhanced electrocatalytic performances by all-direction accessibility and steric site activation. Chemical Science, 2022, 13, 3819-3825.	3.7	26
3	Mesoporous PdBi film as efficient electrocatalyst for ethanol oxidation reaction. JPhys Materials, 2021, 4, 034001.	1.8	0
4	<i>In-Situ</i> Probing of Crystal-Phase-Dependent Photocatalytic Activities of Au Nanostructures by Surface-Enhanced Raman Spectroscopy. , 2020, 2, 409-414.		22
5	Molecularly Thin Nitride Sheets Stabilized by Titanium Carbide as Efficient Bifunctional Electrocatalysts for Fiber-Shaped Rechargeable Zinc-Air Batteries. Nano Letters, 2020, 20, 2892-2898.	4.5	68
6	Unusual 4H-phase twinned noble metal nanokites. Nature Communications, 2019, 10, 2881.	5.8	25
7	Tailored Design of Mesoporous PdCu Nanospheres with Different Compositions Using Polymeric Micelles. ACS Applied Materials & Interfaces, 2019, 11, 36544-36552.	4.0	26
8	Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles. Chemical Science, 2019, 10, 4054-4061.	3.7	175
9	Continuous mesoporous Pd films with tunable pore sizes through polymeric micelle-assisted assembly. Nanoscale Horizons, 2019, 4, 960-968.	4.1	26
10	Synthesis of PdM (M = Zn, Cd, ZnCd) Nanosheets with an Unconventional Face-Centered Tetragonal Phase as Highly Efficient Electrocatalysts for Ethanol Oxidation. ACS Nano, 2019, 13, 14329-14336.	7.3	133
11	A facile surfactant-assisted synthesis of carbon-supported dendritic Pt nanoparticles with high electrocatalytic performance for the oxygen reduction reaction. Microporous and Mesoporous Materials, 2019, 280, 1-6.	2.2	20
12	Spatially Confined Assembly of Monodisperse Ruthenium Nanoclusters in a Hierarchically Ordered Carbon Electrode for Efficient Hydrogen Evolution. Angewandte Chemie, 2018, 130, 5950-5954.	1.6	12
13	Spatially Confined Assembly of Monodisperse Ruthenium Nanoclusters in a Hierarchically Ordered Carbon Electrode for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 5848-5852.	7.2	135
14	Nafion®-coated mesoporous Pd film toward remarkably enhanced detection of lactic acid. RSC Advances, 2018, 8, 10446-10449.	1.7	6
15	Standing Mesochannels: Mesoporous PdCu Films with Vertically Aligned Mesochannels from Nonionic Micellar Solutions. ACS Applied Materials & Interfaces, 2018, 10, 40623-40630.	4.0	25
16	Trimetallic Mesoporous AuCuNi Electrocatalysts with Controlled Compositions Using Block Copolymer Micelles as Templates. Small Methods, 2018, 2, 1800283.	4.6	18
17	Electrochemical Synthesis of Mesoporous Au–Cu Alloy Films with Vertically Oriented Mesochannels Using Block Copolymer Micelles. ACS Applied Materials & Interfaces, 2018, 10, 23783-23791.	4.0	27
18	Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chemical Reviews, 2018, 118, 6409-6455.	23.0	711

#	Article	IF	CITATIONS
19	Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures. Accounts of Chemical Research, 2018, 51, 1764-1773.	7.6	277
20	Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today, 2018, 21, 91-105.	6.2	285
21	Electrochemical deposition of large-sized mesoporous nickel films using polymeric micelles. Chemical Communications, 2018, 54, 10347-10350.	2.2	20
22	Chiral Sensing with Mesoporous Pd@Pt Nanoparticles. ChemElectroChem, 2017, 4, 1832-1835.	1.7	17
23	Simple Fabrication of Titanium Dioxide/N-Doped Carbon Hybrid Material as Non-Precious Metal Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 18782-18789.	4.0	24
24	A mesoporous tin phosphate–graphene oxide hybrid toward the oxygen reduction reaction. Chemical Communications, 2017, 53, 5721-5724.	2.2	20
25	Synthesis and Cytotoxicity of Dendritic Platinum Nanoparticles with HEKâ€293 Cells. Chemistry - an Asian Journal, 2017, 12, 21-26.	1.7	25
26	Threeâ€Ðimensional Superâ€Branched PdCu Nanoarchitectures Exposed on Controlled Crystal Facets. Chemistry - A European Journal, 2017, 23, 51-56.	1.7	24
27	Mesoporous metallic rhodium nanoparticles. Nature Communications, 2017, 8, 15581.	5.8	214
28	Gold-loaded nanoporous iron oxide nanocubes: a novel dispersible capture agent for tumor-associated autoantibody analysis in serum. Nanoscale, 2017, 9, 8805-8814.	2.8	44
29	Tethering mesoporous Pd nanoparticles to reduced graphene oxide sheets forms highly efficient electrooxidation catalysts. Journal of Materials Chemistry A, 2017, 5, 21249-21256.	5.2	32
30	Fabrication of Mesoporous Cu Films on Cu Foils and Their Applications to Dopamine Sensing. Chemistry - an Asian Journal, 2017, 12, 2467-2470.	1.7	5
31	Continuous Mesoporous Pd Films by Electrochemical Deposition in Nonionic Micellar Solution. Chemistry of Materials, 2017, 29, 6405-6413.	3.2	39
32	Blockâ€Copolymerâ€Assisted Electrochemical Synthesis of Mesoporous Gold Electrodes: Towards a Nonâ€Enzymatic Glucose Sensor. ChemElectroChem, 2017, 4, 2571-2576.	1.7	26
33	Layerâ€by‣ayer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores. Angewandte Chemie, 2017, 129, 7944-7949.	1.6	8
34	Layerâ€by‣ayer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores. Angewandte Chemie - International Edition, 2017, 56, 7836-7841.	7.2	36
35	Nanoarchitectures for Mesoporous Metals. Advanced Materials, 2016, 28, 993-1010.	11.1	357
36	Selfâ€Construction from 2D to 3D: Oneâ€Pot Layerâ€byâ€Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. Angewandte Chemie, 2016, 128, 8566-8570.	1.6	13

#	Article	IF	CITATIONS
37	Ordered Mesoporous Cobalt Phosphate with Crystallized Walls toward Highly Active Water Oxidation Electrocatalysts. Small, 2016, 12, 1709-1715.	5.2	153
38	Mesoporous Trimetallic PtPdRu Spheres as Superior Electrocatalysts. Chemistry - A European Journal, 2016, 22, 7174-7178.	1.7	24
39	Controlled Synthesis of Highly Crystallized Mesoporous Mn ₂ O ₃ and Mn ₃ O ₄ by Using Anionic Surfactants. Chemistry - an Asian Journal, 2016, 11, 667-673.	1.7	11
40	Strategic synthesis of mesoporous Pt-on-Pd bimetallic spheres templated from a polymeric micelle assembly. Journal of Materials Chemistry A, 2016, 4, 9169-9176.	5.2	32
41	Nanoporous Mn-based electrocatalysts through thermal conversion of cyano-bridged coordination polymers toward ultra-high efficiency hydrogen peroxide production. Journal of Materials Chemistry A, 2016, 4, 9266-9274.	5.2	51
42	Superior electrocatalytic activity of mesoporous Au film templated from diblock copolymer micelles. Nano Research, 2016, 9, 1752-1762.	5.8	46
43	First Synthesis of Continuous Mesoporous Copper Films with Uniformly Sized Pores by Electrochemical Soft Templating. Angewandte Chemie - International Edition, 2016, 55, 12746-12750.	7.2	50
44	First Synthesis of Continuous Mesoporous Copper Films with Uniformly Sized Pores by Electrochemical Soft Templating. Angewandte Chemie, 2016, 128, 12938-12942.	1.6	15
45	Tunableâ€Sized Polymeric Micelles and Their Assembly for the Preparation of Large Mesoporous Platinum Nanoparticles. Angewandte Chemie, 2016, 128, 10191-10195.	1.6	14
46	Tunableâ€Sized Polymeric Micelles and Their Assembly for the Preparation of Large Mesoporous Platinum Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 10037-10041.	7.2	122
47	Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today, 2016, 11, 373-391.	6.2	200
48	Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy, 2016, 26, 313-323.	8.2	345
49	Self onstruction from 2D to 3D: Oneâ€Pot Layerâ€byâ€Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. Angewandte Chemie - International Edition, 2016, 55, 8426-8430.	7.2	101
50	Three-dimensional hyperbranched PdCu nanostructures with high electrocatalytic activity. Chemical Communications, 2016, 52, 1186-1189.	2.2	55
51	Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chemical Science, 2016, 7, 1575-1581.	3.7	197
52	Mesoporous palladium–copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO ₂ to CO. Journal of Materials Chemistry A, 2016, 4, 4776-4782.	5.2	115
53	Morphosynthesis of nanoporous pseudo Pd@Pt bimetallic particles with controlled electrocatalytic activity. Journal of Materials Chemistry A, 2016, 4, 6465-6471.	5.2	33
54	Synthesis of Nitrogenâ€Doped Mesoporous Carbon Spheres with Extra‣arge Pores through Assembly of Diblock Copolymer Micelles. Angewandte Chemie - International Edition, 2015, 54, 588-593.	7.2	380

#	Article	IF	CITATIONS
55	Multimetallic Mesoporous Spheres Through Surfactantâ€Directed Synthesis. Advanced Science, 2015, 2, 1500112.	5.6	116

56 Mesoporous Spheres: Multimetallic Mesoporous Spheres Through Surfactant-Directed Synthesis (Adv.) Tj ETQq0 0 0 grgBT /Overlock 10

57	Oxygenâ€Assisted Synthesis of Mesoporous Palladium Nanoparticles as Highly Active Electrocatalysts. Chemistry - A European Journal, 2015, 21, 18671-18676.	1.7	6
58	Synthesis of Nanoporous Ni o Mixed Oxides by Thermal Decomposition of Metal yanide Coordination Polymers. Chemistry - an Asian Journal, 2015, 10, 1541-1545.	1.7	29
59	Polymeric Micelle Assembly for the Smart Synthesis of Mesoporous Platinum Nanospheres with Tunable Pore Sizes. Angewandte Chemie - International Edition, 2015, 54, 11073-11077.	7.2	160
60	Preparation of a platinum electrocatalyst by coaxial pulse arc plasma deposition. Science and Technology of Advanced Materials, 2015, 16, 024804.	2.8	20
61	Electrochemical Synthesis of Mesoporous Pt Nanowires with Highly Electrocatalytic Activity toward Methanol Oxidation Reaction. Electrochimica Acta, 2015, 183, 107-111.	2.6	22
62	Synthesis of ternary PtPdCu spheres with three-dimensional nanoporous architectures toward superior electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 18053-18058.	5.2	52
63	A Solution Phase Synthesis of Dendritic Platinum Nanoelectrocatalysts with the Assistance of Polyoxyethylene Nonylphenyl Ether. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 245-250.	1.9	6
64	Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties. Nature Communications, 2015, 6, 6608.	5.8	178
65	Surfactant-Directed Synthesis of Mesoporous Pd Films with Perpendicular Mesochannels as Efficient Electrocatalysts. Journal of the American Chemical Society, 2015, 137, 11558-11561.	6.6	100
66	Layer-by-layer motif hybridization: nanoporous nickel oxide flakes wrapped into graphene oxide sheets toward enhanced oxygen reduction reaction. Chemical Communications, 2015, 51, 16409-16412.	2.2	37
67	Block Copolymer-Assisted Solvothermal Synthesis of Bimetallic Pt-Pd Nanoparticles. Electrochimica Acta, 2015, 183, 119-124.	2.6	3
68	Dealloying of Mesoporous PtCu Alloy Film for the Synthesis of Mesoporous Pt Films with High Electrocatalytic Activity. Chemistry - an Asian Journal, 2015, 10, 316-320.	1.7	24
69	Synthesis of Nanoporous Carbon–Cobaltâ€Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal–Organic Frameworks. Chemistry - A European Journal, 2014, 20, 4217-4221.	1.7	253
70	Displacement Plating of a Mesoporous Pt Skin onto Co Nanochains in a Low oncentration Surfactant Solution. Chemistry - A European Journal, 2014, 20, 3277-3282.	1.7	32
71	Mesoporous Pt hollow cubes with controlled shell thicknesses and investigation of their electrocatalytic performance. Chemical Communications, 2014, 50, 15337-15340.	2.2	62
72	A universal approach to the preparation of colloidal mesoporous platinum nanoparticles with controlled particle sizes in a wide range from 20 nm to 200 nm. Physical Chemistry Chemical Physics, 2014, 16, 8787-8790.	1.3	28

#	Article	IF	CITATIONS
73	Size-controlled synthesis of mesoporous palladium nanoparticles as highly active and stable electrocatalysts. Chemical Communications, 2014, 50, 11753-11756.	2.2	45
74	Synthesis of Mesoporous Platinum–Copper Films by Electrochemical Micelle Assembly and Their Electrochemical Applications. Chemistry - A European Journal, 2014, 20, 729-733.	1.7	23
75	Facile solution synthesis of Ag@Pt core–shell nanoparticles with dendritic Pt shells. Physical Chemistry Chemical Physics, 2013, 15, 3490.	1.3	159
76	Electrochemical Deposition of Mesoporous Pt–Au Alloy Films in Aqueous Surfactant Solutions: Towards a Highly Sensitive Amperometric Glucose Sensor. Chemistry - A European Journal, 2013, 19, 2242-2246.	1.7	128
77	Electrochemical Synthesis of Oneâ€Dimensional Mesoporous Pt Nanorods Using the Assembly of Surfactant Micelles in Confined Space. Angewandte Chemie - International Edition, 2013, 52, 8050-8053.	7.2	259
78	Rücktitelbild: Electrochemical Synthesis of One-Dimensional Mesoporous Pt Nanorods Using the Assembly of Surfactant Micelles in Confined Space (Angew. Chem. 31/2013). Angewandte Chemie, 2013, 125, 8328-8328.	1.6	0
79	Controllable anchoring of gold nanoparticles to polypyrrole nanofibers by hydrogen bonding and their application in nonenzymatic glucose sensors. Biosensors and Bioelectronics, 2012, 38, 402-406.	5.3	49
80	Au@Pd core–shell nanoparticles: A highly active electrocatalyst for amperometric gaseous ethanol sensors. Sensors and Actuators B: Chemical, 2012, 171-172, 1192-1198.	4.0	25
81	Enhanced ethanol electrooxidation of hollow Pd nanospheres prepared by galvanic exchange reactions. Materials Letters, 2012, 69, 92-95.	1.3	20
82	An improved sensitivity nonenzymatic glucose biosensor based on a Cu O modified electrode. Biosensors and Bioelectronics, 2010, 26, 903-907.	5.3	177
83	Electrochemical acetylene sensor based on Au/MWCNTs. Sensors and Actuators B: Chemical, 2010, 149, 427-431.	4.0	34