Valesca Pandolfi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8274419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The WRKY transcription factor family in cowpea: Genomic characterization and transcriptomic profiling under root dehydration. Gene, 2022, 823, 146377.	2.2	5
2	Importance of inositols and their derivatives in cowpea under root dehydration: An omics perspective. Physiologia Plantarum, 2021, 172, 441-462.	5.2	1
3	Reference genes for quantitative real-time PCR normalization of Cenostigma pyramidale roots under salt stress and mycorrhizal association. Genetics and Molecular Biology, 2021, 44, e20200424.	1.3	1
4	Salt tolerance of Calotropis procera begins with immediate regulation of aquaporin activity in the root system. Physiology and Molecular Biology of Plants, 2021, 27, 457-468.	3.1	12
5	Transcriptome of <i>Cenostigma pyramidale</i> roots, a woody legume, under different salt stress times. Physiologia Plantarum, 2021, 173, 1463-1480.	5.2	10
6	The endophytome (plant-associated microbiome): methodological approaches, biological aspects, and biotech applications. World Journal of Microbiology and Biotechnology, 2021, 37, 206.	3.6	7
7	Plant Thaumatin-like Proteins: Function, Evolution and Biotechnological Applications. Current Protein and Peptide Science, 2020, 21, 36-51.	1.4	71
8	Reference genes selection for Calotropis procera under different salt stress conditions. PLoS ONE, 2019, 14, e0215729.	2.5	7
9	Inositol phosphates and Raffinose family oligosaccharides pathways: Structural genomics and transcriptomics in soybean under root dehydration. Plant Gene, 2019, 20, 100202.	2.3	5
10	Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Current Protein and Peptide Science, 2019, 20, 368-395.	1.4	42
11	Activity of non-canonical pluripotency-associated transcription factors in goat cumulus-oocyte complexes. Livestock Science, 2018, 212, 52-56.	1.6	6
12	Cowpea and abiotic stresses: identification of reference genes for transcriptional profiling by qPCR. Plant Methods, 2018, 14, 88.	4.3	37
13	Antimicrobial and structural insights of a new snakin-like peptide isolated from Peltophorum dubium (Fabaceae). Amino Acids, 2018, 50, 1245-1259.	2.7	25
14	Survey of mutations in prolificacy genes in Santa Ines and Morada Nova sheep. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2017, 69, 1047-1053.	0.4	1
15	Snakin: Structure, Roles and Applications of a Plant Antimicrobial Peptide. Current Protein and Peptide Science, 2017, 18, 368-374.	1.4	51
16	Heterologous Expression Systems for Plant Defensin Expression: Examples of Success and Pitfalls. Current Protein and Peptide Science, 2017, 18, 391-399.	1.4	5
17	Plants Defense-related Cyclic Peptides: Diversity, Structure and Applications. Current Protein and Peptide Science, 2017, 18, 375-390.	1.4	5
18	Epigenetic Signals on Plant Adaptation: a Biotic Stress Perspective. Current Protein and Peptide Science, 2017, 18, 352-367.	1.4	20

Valesca Pandolfi

#	Article	IF	CITATIONS
19	Resistance (R) Genes: Applications and Prospects for Plant Biotechnology and Breeding. Current Protein and Peptide Science, 2017, 18, 323-334.	1.4	24
20	Drought Stress Tolerance in Plants: Insights from Transcriptomic Studies. , 2016, , 153-185.		4
21	Plants Defense-related Cyclic Peptides: Diversity, Structure and Applications. Current Protein and Peptide Science, 2016, , .	1.4	2
22	Photosynthesis, antioxidant activities and transcriptional responses in two sugarcane (Saccharum) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf 50 21
23	Expression dynamics and genome distribution of osmoprotectants in soybean: identifying important components to face abiotic stress. BMC Bioinformatics, 2013, 14, S7.	2.6	32
24	Natural Antisense Transcripts in Plants: A Review and Identification in Soybean Infected with <i>Phakopsora pachyrhizi</i> SuperSAGE Library. Scientific World Journal, The, 2013, 2013, 1-14.	2.1	12
25	Early Transcriptional Response of Soybean Contrasting Accessions to Root Dehydration. PLoS ONE, 2013, 8, e83466.	2.5	27
26	New Insights in the Sugarcane Transcriptome Responding to Drought Stress as Revealed by Supersage. Scientific World Journal, The, 2012, 2012, 1-14.	2.1	44
27	In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago. Genetics and Molecular Biology, 2012, 35, 315-321.	1.3	13
28	Overall picture of expressed Heat Shock Factors in Glycine max, Lotus japonicus and Medicago truncatula. Genetics and Molecular Biology, 2012, 35, 247-259.	1.3	27
29	An overall evaluation of the resistance (R) and pathogenesis-related (PR) superfamilies in soybean, as compared with Medicago and Arabidopsis. Genetics and Molecular Biology, 2012, 35, 260-271.	1.3	18
30	Identification of Plant Protein Kinases in Response to Abiotic and Biotic Stresses Using SuperSAGE. Current Protein and Peptide Science, 2011, 12, 643-656.	1.4	14
31	Characterization of a New Defensin from Cowpea (Vigna unguiculata (L.) Walp.). Protein and Peptide Letters, 2010, 17, 297-304.	0.9	17
32	Plant Antimicrobial Peptides: An Overview of SuperSAGE Transcriptional Profile and a Functional Review. Current Protein and Peptide Science, 2010, 11, 220-230.	1.4	23
33	Gene expression profile of the plant pathogen Fusarium graminearum under the antagonistic effect of Pantoea agglomerans. Genetics and Molecular Research, 2010, 9, 1298-1311.	0.2	9
34	In Silico Screening for Pathogenesis Related-2 Gene Candidates in Vigna Unguiculata Transcriptome. Lecture Notes in Computer Science, 2010, , 70-81.	1.3	27
35	Cytogenetics and immature embryo culture at Embrapa Trigo breeding program: transfer of disease resistance from related species by artificial resynthesis of hexaploid wheat (Triticum aestivum L. em.) Tj ETQq1	1 0.78431	4 rg&T /Overlo
36	The Transcriptional Modulation of Inositols and Raffinose Family Oligosaccharides Pathways in Plants $\hat{s} \in \mathbb{R}^{n}$ Ap (A) Planta Stress Perspective Q		0

Plants â€" An (A)Biotic Stress Perspective. , 0, , .