Antonio M Saraiva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8274197/publications.pdf Version: 2024-02-01

ANTONIO M SADAINA

#	Article	IF	CITATIONS
1	Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 2016, 351, 388-391.	6.0	342
2	The Dependence of Crops for Pollinators and the Economic Value of Pollination in Brazil. Journal of Economic Entomology, 2015, 108, 849-857.	0.8	164
3	From wireless sensors to field mapping: Anatomy of an application for precision agriculture. Computers and Electronics in Agriculture, 2007, 58, 25-36.	3.7	135
4	Crop pollinators in Brazil: a review of reported interactions. Apidologie, 2015, 46, 209-223.	0.9	133
5	Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants. Ecography, 2013, 36, 649-656.	2.1	129
6	Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecological Modelling, 2012, 244, 127-131.	1.2	125
7	Worldwide Phylogenetic Group Patterns of Escherichia coli from Commensal Human and Wastewater Treatment Plant Isolates. Frontiers in Microbiology, 2017, 8, 2512.	1.5	77
8	An infrastructure for the development of distributed service-oriented information systems for precision agriculture. Computers and Electronics in Agriculture, 2007, 58, 37-48.	3.7	76
9	Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks. PLoS ONE, 2015, 10, e0137198.	1.1	76
10	Projected climate change threatens pollinators and crop production in Brazil. PLoS ONE, 2017, 12, e0182274.	1.1	69
11	Desafios atuais da modelagem preditiva de distribuição de espécies. Rodriguesia, 2012, 63, 733-749.	0.9	54
12	Climate change in the Eastern Amazon: crop-pollinator and occurrence-restricted bees are potentially more affected. Regional Environmental Change, 2020, 20, 1.	1.4	54
13	Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agriculture, Ecosystems and Environment, 2013, 171, 39-46.	2.5	45
14	A conceptual framework for quality assessment and management of biodiversity data. PLoS ONE, 2017, 12, e0178731.	1.1	42
15	Landscape genomics to the rescue of a tropical bee threatened by habitat loss and climate change. Evolutionary Applications, 2019, 12, 1164-1177.	1.5	41
16	Best practice for the use of scenarios for restoration planning. Current Opinion in Environmental Sustainability, 2017, 29, 14-25.	3.1	40
17	Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management. Apidologie, 2020, 51, 406-421.	0.9	39
18	Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator. PLoS ONE, 2016, 11, e0148295.	1.1	37

ANTONIO M SARAIVA

#	Article	IF	CITATIONS
19	Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change. PLoS ONE, 2015, 10, e0129225.	1.1	34
20	Protecting a managed bee pollinator against climate change: strategies for an area with extreme climatic conditions and socioeconomic vulnerability. Apidologie, 2017, 48, 784-794.	0.9	32
21	A reference process for automating bee species identification based on wing images and digital image processing. Ecological Informatics, 2014, 24, 248-260.	2.3	30
22	Ecological niche modeling and geographical distribution of pollinator and plants: A case study of Peponapis fervens (Smith, 1879) (Eucerini: Apidae) and Cucurbita species (Cucurbitaceae). Ecological Informatics, 2010, 5, 59-66.	2.3	29
23	Bat diversity in CarajÃ _i s National Forest (Eastern Amazon) and potential impacts on ecosystem services under climate change. Biological Conservation, 2018, 218, 200-210.	1.9	29
24	The São Paulo Declaration on Planetary Health. Lancet, The, 2021, 398, 1299.	6.3	29
25	Climate Warming May Threaten Reproductive Diapause of a Highly Eusocial Bee. Environmental Entomology, 2015, 44, 1172-1181.	0.7	26
26	A reference business process for ecological niche modelling. Ecological Informatics, 2008, 3, 75-86.	2.3	24
27	A Buzz for Sustainability and Conservation: The Growing Potential of Citizen Science Studies on Bees. Sustainability, 2021, 13, 959.	1.6	22
28	Ecological niche similarities of Peponapis bees and non-domesticated Cucurbita species. Ecological Modelling, 2011, 222, 2011-2018.	1.2	18
29	Análise de redes sociais como estratégia de apoio à vigilância em saúde durante a Covid-19. Estudos Avancados, 2020, 34, 261-282.	0.2	17
30	Interactions at large spatial scale: The case of Centris bees and floral oil producing plants in South America. Ecological Modelling, 2013, 258, 74-81.	1.2	16
31	Gaps and limitations in the use of restoration scenarios: a review. Restoration Ecology, 2018, 26, 1108-1119.	1.4	15
32	Developing Standards for Improved Data Quality and for Selecting Fit for Use Biodiversity Data. Biodiversity Information Science and Standards, 0, 4, .	0.0	15
33	Wild bees of Chile: a database on taxonomy, sociality, and ecology. Ecology, 2021, 102, e03377.	1.5	10
34	Ecological niche modeling and principal component analysis of Krameria Loefl. (Krameriaceae). Journal of Arid Environments, 2011, 75, 870-872.	1.2	9
35	Areas Requiring Restoration Efforts are a Complementary Opportunity to Support the Demand for Pollination Services in Brazil. Environmental Science & amp; Technology, 2021, 55, 12043-12053.	4.6	9
36	Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts. Diversity and Distributions, 2022, 28, 1404-1415.	1.9	9

3

ANTONIO M SARAIVA

#	Article	IF	CITATIONS
37	Data Quality Control in Biodiversity Informatics: The Case of Species Occurrence Data. IEEE Latin America Transactions, 2014, 12, 683-693.	1.2	7
38	Adaptive Automata Applied on Automation and Robotics (A4R). IEEE Latin America Transactions, 2007, 5, 539-543.	1.2	5
39	Estudo comparativo do diagnóstico de câncer pulmonar entre tomografia computadorizada e broncoscopia. Radiologia Brasileira, 2010, 43, 229-235.	0.3	5
40	Clustering of water bodies in unpolluted and polluted environments based on Escherichia coli phylogroup abundance using a simple interaction database. Genetics and Molecular Biology, 2014, 37, 694-701.	0.6	5
41	A Reference Process for Management Zones Delineation in Precision Agriculture. IEEE Latin America Transactions, 2015, 13, 727-738.	1.2	5
42	Controle de qualidade de monitores de diagnóstico por imagem e iluminância nos espaços de pós-processamento em serviços de imagiologia. Radiologia Brasileira, 2012, 45, 29-34.	0.3	5
43	A Methodology for Applying Social Network Analysis Metrics to Biological Interaction Networks. , 2015, , .		4
44	Social Network Analysis Metrics and Their Application in Microbiological Network Studies. Studies in Computational Intelligence, 2014, , 251-260.	0.7	4
45	Interfaces à transmissão e spillover do coronavÃrus entre florestas e cidades. Estudos Avancados, 2020, 34, 191-208.	0.2	4
46	A Weighing System for Grab Loaders for Sugar Cane Yield Mapping. Precision Agriculture, 2000, 2, 293-309.	3.1	2
47	Ad Hoc Wireless Sensor Networks Applied to Animal Welfare Research. , 2008, , .		2
48	A Reference Process to Design Information Systems for Sustainable Design Based on LCA, PSS, Social and Economic Aspects. International Federation for Information Processing, 2010, , 269-280.	0.4	2
49	Evaluation of an ICP Based Algorithm for Simultaneous Localization and Mapping Using a 3D Simulated P3DX Robot. , 2010, , .		2
50	Evaluation of Adaptive Genetic Algorithm to Environmental Modeling of Peponapis and Cucurbita. IEEE Latin America Transactions, 2011, 9, 171-177.	1.2	2
51	A Methodology for Applying Social Network Analysis Metrics on Biodiversity. IEEE Latin America Transactions, 2015, 13, 3026-3037.	1.2	2
52	Data Reliability in a Citizen Science Protocol for Monitoring Stingless Bees Flight Activity. Insects, 2021, 12, 766.	1.0	2
53	Plant-pollinator Vocabulary - a Contribution to Interaction Data Standardization. Biodiversity Information Science and Standards, 0, 5, .	0.0	2
54	Evaluating multipath routing protocols to improve video transmission for precision agriculture. , 2014, , .		1

#	Article	IF	CITATIONS
55	PlayGround 2.0: Simulating behavior decisions with trust and control computations. , 2016, , .		1
56	Species Distribution Modeling with Scalability: The Case Study of P-GARP, a Parallel Genetic Algorithm for Rule-Set Production. , 2017, , .		1
57	The Need of Species Distribution Models Metadata: Using Species Distribution Model to Address Decision Making on Climate Change. Biodiversity Information Science and Standards, 0, 2, e25478.	0.0	1
58	Communication Protocols for Application in Agricultural Vehicles. , 2003, , 435-450.		1
59	Computational Techniques for Biologic Species Distribution Modeling. , 2011, , 308-325.		1
60	Brazilian Plant-Pollinator Interactions Network: definition of a data standard for digitization, sharing, and aggregation of plant-pollinator interaction data. Biodiversity Information Science and Standards, 0, 1, e20298.	0.0	1
61	A Multi-platform Mobile Application to Collect Citizen Science Data for Bignoniaceae Phenological Research. Biodiversity Information Science and Standards, 0, 2, e25582.	0.0	1
62	Linking Agrobiodiversity DataÂthrough Metadata Standards. Biodiversity Information Science and Standards, 0, 4, .	0.0	1
63	A Google Sheet Add-on for Biodiversity Data Standardization and Sharing. Biodiversity Information Science and Standards, 0, 4, .	0.0	1
64	Continental Malacoculture Chain Modeling and Traceability Requirements. , 0, , .		0
65	Information Systems Traceability based on Ontology for Fish Farming Productive Chain. , 0, , .		0
66	An Open-Top Chamber Model For CO2 Injection Control. , 0, , .		0
67	A security architecture for sharing distributed biodiversity databases. , 0, , .		0
68	A Weblab For Research And Education On Native Bees. , 0, , .		0
69	SOC & SOA in Ecological Niche Modelling and Agribusiness: Discussion and Case Studies. , 2009, , .		0
70	Specification of SOA Components and Web Services to Integrate Ecological Niche Modelling Systems and IABIN-PTN. , 2009, , .		0
71	A complete RM-ODP case-study to integrate geospatial services and ecological niche modeling systems. , 2012, , .		0
72	Parallelization in Predicting Species Distribution. , 2017, , .		0

ANTONIO M SARAIVA

#	Article	IF	CITATIONS
73	Toward a Biodiversity Data Fitness for Use Backbone (FFUB): A Node.js module prototype. Biodiversity Information Science and Standards, 0, 1, e20300.	0.0	0
74	Defining a Data Quality (DQ) profile and DQ report using a prototype of Node.js module of the Fitness for Use Backbone (FFUB). Biodiversity Information Science and Standards, 0, 1, e20275.	0.0	0
75	Brazilian Network on Plant-Pollinator Interactions: an update on the initiative of a standard for plant-pollinator interactions data. Biodiversity Information Science and Standards, 0, 2, e25343.	0.0	0
76	New Requirements of Biodiversity Research for Metadata on Models and Sensors on the Internet of Things and Big Data Era. Biodiversity Information Science and Standards, 0, 2, e25653.	0.0	0
77	Role of species: traits, interactions and ecosystem services. Biodiversity Information Science and Standards, 0, 2, e25345.	0.0	0
78	The Online Pollen Catalogs Network (RCPol) data quality assurance system. Biodiversity Information Science and Standards, 0, 2, e25657.	0.0	0
79	The Online Pollen Catalogs Network (RCPol). Biodiversity Information Science and Standards, 0, 2, e25658.	0.0	0
80	Natural History Collection Data: Traits to Identify Plant-Pollinator Interactions in a Spatial Context. Biodiversity Information Science and Standards, 0, 2, e25857.	0.0	0
81	Biodiversity Informatics in Brazil: A personal perspective. Biodiversity Information Science and Standards, 0, 3, .	0.0	Ο
82	Global Biodiversity Knowledge Commons and Civil Society of the Global South. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
83	Methodological principles to create a metadata extension to the Darwin Core standard for agrobiodiversity data. Brazilian Journal of Information Science, 2020, 14, e020015.	0.2	Ο
84	Biodiversity Climate Shifts: shaping data transformation and evaluation. Biodiversity Information Science and Standards, 0, 4, .	0.0	0
85	Sublinear evaluation of complex networks for extensive exploration of configurations for critical scenarios and decision making. , 2021, , .		0