Lin Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8273926/publications.pdf Version: 2024-02-01

LINLINC

#	Article	IF	CITATIONS
1	Thermal Camouflaging MXene Robotic Skin with Bioâ€Inspired Stimulus Sensation and Wireless Communication. Advanced Functional Materials, 2022, 32, .	14.9	39
2	2D-Material-integrated hydrogels as multifunctional protective skins for soft robots. Materials Horizons, 2021, 8, 2065-2078.	12.2	31
3	Metal Ionâ€Induced Assembly of MXene Aerogels via Biomimetic Microtextures for Electromagnetic Interference Shielding, Capacitive Deionization, and Microsupercapacitors. Advanced Energy Materials, 2021, 11, 2101494.	19.5	61
4	Wireless Detection of Biogenic Amines Using a Split-Ring Resonator with Silver Nanoparticles-Decorated Molybdenum Disulfide. Sensors and Actuators B: Chemical, 2021, 343, 130155.	7.8	17
5	Boron nanosheets induced microstructure and charge transfer tailoring in carbon nanofibrous mats towards highly efficient water splitting. Nano Energy, 2021, 88, 106246.	16.0	15
6	Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Materials Horizons, 2020, 7, 54-70.	12.2	55
7	Reversible Crumpling of 2D Titanium Carbide (MXene) Nanocoatings for Stretchable Electromagnetic Shielding and Wearable Wireless Communication. Advanced Functional Materials, 2020, 30, 1907451.	14.9	155
8	Multigenerational Crumpling of 2D Materials for Anticounterfeiting Patterns with Deep Learning Authentication. Matter, 2020, 3, 2160-2180.	10.0	26
9	Wireless Ti ₃ C ₂ T _{<i>x</i>} MXene Strain Sensor with Ultrahigh Sensitivity and Designated Working Windows for Soft Exoskeletons. ACS Nano, 2020, 14, 11860-11875.	14.6	99
10	Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems. Materials Today Advances, 2020, 8, 100088.	5.2	67
11	Heterogeneous, 3D Architecturing of 2D Titanium Carbide (MXene) for Microdroplet Manipulation and Voice Recognition. ACS Applied Materials & amp; Interfaces, 2020, 12, 8392-8402.	8.0	44
12	Carbon nanotube-integrated conductive hydrogels as multifunctional robotic skin. Carbon, 2020, 161, 784-793.	10.3	85
13	Multi-interface engineering of solar evaporation devices via scalable, synchronous thermal shrinkage and foaming. Nano Energy, 2020, 74, 104875.	16.0	57
14	Mechanochemical engineering of 2D materials for multiscale biointerfaces. Journal of Materials Chemistry B, 2019, 7, 6293-6309.	5.8	17
15	Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities. Science Robotics, 2019, 4, .	17.6	53
16	Supercompressible Coaxial Carbon Nanotube@Graphene Arrays with Invariant Viscoelasticity over â~'100 to 500 °C in Ambient Air. ACS Applied Materials & Interfaces, 2018, 10, 9688-9695.	8.0	10
17	Scalable Production of Few-Layer Boron Sheets by Liquid-Phase Exfoliation and Their Superior Supercapacitive Performance. ACS Nano, 2018, 12, 1262-1272.	14.6	177
18	Largeâ€Area Atomic Layers of the Chargeâ€Đensityâ€Wave Conductor TiSe ₂ . Advanced Materials, 2018, 30, 1704382.	21.0	60

Lin Jing

#	Article	IF	CITATIONS
19	Engineering of High-Density Thin-Layer Graphite Foam-Based Composite Architectures with Superior Compressibility and Excellent Electromagnetic Interference Shielding Performance. ACS Applied Materials & Interfaces, 2018, 10, 41707-41716.	8.0	55
20	Waferâ€6cale Vertically Aligned Carbon Nanotubes Locked by In Situ Hydrogelation toward Strengthening Static and Dynamic Compressive Responses. Macromolecular Materials and Engineering, 2018, 303, 1800024.	3.6	6
21	Concentric and Spiral Few-Layer Graphene: Growth Driven by Interfacial Nucleation vs Screw Dislocation. Chemistry of Materials, 2018, 30, 6858-6866.	6.7	21
22	Concentric dopant segregation in CVD-grown N-doped graphene single crystals. Applied Surface Science, 2018, 454, 121-129.	6.1	5
23	Smoothening of wrinkles in CVD-grown hexagonal boron nitride films. Nanoscale, 2018, 10, 16243-16251.	5.6	15
24	Thermal Conductivity Enhancement of Coaxial Carbon@Boron Nitride Nanotube Arrays. ACS Applied Materials & Interfaces, 2017, 9, 14555-14560.	8.0	35
25	Biocompatible Hydroxylated Boron Nitride Nanosheets/Poly(vinyl alcohol) Interpenetrating Hydrogels with Enhanced Mechanical and Thermal Responses. ACS Nano, 2017, 11, 3742-3751.	14.6	191
26	Composition-controlled synthesis and tunable optical properties of ternary boron carbonitride nanotubes. RSC Advances, 2017, 7, 12511-12517.	3.6	14
27	The Electrochemical Response of Single Crystalline Copper Nanowires to Atmospheric Air and Aqueous Solution. Small, 2017, 13, 1603411.	10.0	15
28	Multifunctional and highly compressive cross-linker-free sponge based on reduced graphene oxide and boron nitride nanosheets. Chemical Engineering Journal, 2017, 328, 825-833.	12.7	30
29	Tuning electro-optic susceptibity via strain engineering in artificial PZT multilayer films for high-performance broadband modulator. Applied Surface Science, 2017, 425, 1059-1065.	6.1	8
30	Improved synthesis and growth of graphene oxide for field effect transistor biosensors. Biomedical Microdevices, 2016, 18, 61.	2.8	6
31	Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties. Nanoscale, 2016, 8, 11114-11122.	5.6	30
32	Trimethylamine Borane: A New Single-Source Precursor for Monolayer h-BN Single Crystals and h-BCN Thin Films. Chemistry of Materials, 2016, 28, 2180-2190.	6.7	62
33	Facile Synthesis of Millimeter-Scale Vertically Aligned Boron Nitride Nanotube Forests by Template-Assisted Chemical Vapor Deposition. Chemistry of Materials, 2015, 27, 7156-7163.	6.7	47
34	Optical and electro-optic anisotropy of epitaxial PZT thin films. Applied Physics Letters, 2015, 107, .	3.3	30