
E Elizabeth Tymczyszyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8273627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Freeze-drying of Enterococcus durans: Effect on their probiotics and biopreservative properties. LWT - Food Science and Technology, 2021, 137, 110496.	2.5	17
2	Influence of Patagonian Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory perception of Pinot Noir wine after malolactic fermentation. Australian Journal of Grape and Wine Research, 2021, 27, 118-127.	1.0	9
3	β-Glucosidase Activity of Lactiplantibacillus plantarum UNQLp 11 in Different Malolactic Fermentations Conditions: Effect of pH and Ethanol Content. Fermentation, 2021, 7, 22.	1.4	5
4	Whey permeate as a substrate for the production of freeze-dried Lactiplantibacillus plantarum to be used as a malolactic starter culture. World Journal of Microbiology and Biotechnology, 2021, 37, 115.	1.7	4
5	Use of Apple Pomace as Substrate for Production of Lactiplantibacillus plantarum Malolactic Starter Cultures. Fermentation, 2021, 7, 244.	1.4	0
6	An overview of peroxidation reactions using liposomes as model systems and analytical methods as monitoring tools. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111254.	2.5	15
7	Probiotics, Galacto-oligosaccharides, and zinc antagonize biological effects of enterohaemorrhagic Escherichia coli on cultured cells and brine shrimp model. LWT - Food Science and Technology, 2020, 128, 109435.	2.5	5
8	Complete Genome Sequencing of Lactobacillus plantarum UNQLp 11 Isolated from a Patagonian Pinot Noir Wine. South African Journal of Enology and Viticulture, 2020, 41, .	0.8	4
9	Factors influencing the membrane fluidity and the impact on production of lactic acid bacteria starters. Applied Microbiology and Biotechnology, 2019, 103, 6867-6883.	1.7	54
10	Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Frontiers in Nutrition, 2019, 6, 78.	1.6	116
11	Design of a lowâ€cost culture medium based in whey permeate for biomass production of enological <i>Lactobacillus plantarum</i> strains. Biotechnology Progress, 2019, 35, e2791.	1.3	8
12	Survival and implantation of indigenous psychrotrophic Oenococcus oeni strains during malolactic fermentation in a Patagonian Pinot noir wine. LWT - Food Science and Technology, 2019, 108, 353-360.	2.5	7
13	Lactobacillus plantarum as a malolactic starter culture in winemaking: A new (old) player?. Electronic Journal of Biotechnology, 2019, 38, 10-18.	1.2	50
14	Changes in the volatile profile of Pinot noir wines caused by Patagonian Lactobacillus plantarum and Oenococcus oeni strains. Food Research International, 2018, 106, 22-28.	2.9	40
15	Cell surface damage and morphological changes in Oenococcus oeni after freeze-drying and incubation in synthetic wine. Cryobiology, 2018, 82, 15-21.	0.3	13
16	Advantages of Using Blend Cultures of Native L. plantarum and O. oeni Strains to Induce Malolactic Fermentation of Patagonian Malbec Wine. Frontiers in Microbiology, 2018, 9, 2109.	1.5	21
17	Genome Sequence of Oenococcus oeni UNQOe19, the First Fully Assembled Genome Sequence of a Patagonian Psychrotrophic Oenological Strain. Microbiology Resource Announcements, 2018, 7, .	0.3	8
18	Interaction of galacto-oligosaccharides and lactulose with dipalmitoylphosphatidilcholine lipid membranes as determined by infrared spectroscopy. RSC Advances, 2017, 7, 24298-24304.	1.7	3

E Elizabeth Tymczyszyn

#	Article	IF	CITATIONS
19	Comparative vinification assays with selected Patagonian strains of Oenococcus oeni and Lactobacillus plantarum. LWT - Food Science and Technology, 2017, 77, 348-355.	2.5	43
20	Effect of Galacto-Oligosaccharides: Maltodextrin Matrices on the Recovery of Lactobacillus plantarum after Spray-Drying. Frontiers in Microbiology, 2016, 7, 584.	1.5	37
21	Indigenous Lactic Acid Bacteria Communities Associated with Spontaneous Malolactic Fermentations in Patagonian Wines: Basic and Applied Aspects. , 2016, , 225-248.		0
22	Growth and consumption of l-malic acid in wine-like medium by acclimated and non-acclimated cultures of Patagonian Oenococcus oeni strains. Folia Microbiologica, 2016, 61, 365-373.	1.1	31
23	Applications of Infrared and Raman Spectroscopies to Probiotic Investigation. Foods, 2015, 4, 283-305.	1.9	52
24	Role of S-layer proteins in the biosorption capacity of lead by Lactobacillus kefir. World Journal of Microbiology and Biotechnology, 2015, 31, 583-592.	1.7	25
25	Study of surface damage on cell envelope assessed by AFM and flow cytometry of <i>Lactobacillus plantarum</i> exposed to ethanol and dehydration. Journal of Applied Microbiology, 2015, 118, 1409-1417.	1.4	22
26	Effect of protective agents and previous acclimation on ethanol resistance of frozen and freeze-dried Lactobacillus plantarum strains. Cryobiology, 2015, 71, 522-528.	0.3	25
27	Effect of the fatty acid composition of acclimated oenological <i> <scp>L</scp> actobacillus plantarum </i> on the resistance to ethanol. Letters in Applied Microbiology, 2015, 60, 155-161.	1.0	15
28	Stabilization of polymer lipid complexes prepared with lipids of lactic acid bacteria upon preservation and internalization into eukaryotic cells. Colloids and Surfaces B: Biointerfaces, 2014, 123, 446-451.	2.5	6
29	Galactoâ€oligosaccharides and lactulose as protectants against desiccation of <i>Lactobacillus delbrueckii</i> subsp. <i>bulcaricus</i> . Biotechnology Progress, 2014, 30, 1231-1238.	1.3	17
30	Effect of acclimation medium on cell viability, membrane integrity and ability to consume malic acid in synthetic wine by oenological Lactobacillus plantarum strains. Journal of Applied Microbiology, 2014, 116, 360-367.	1.4	27
31	Removal of cadmium by <i>Lactobacillus kefir</i> as a protective tool against toxicity. Journal of Dairy Research, 2014, 81, 280-287.	0.7	19
32	Stability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus in the presence of galacto-oligosaccharides and lactulose as determined by near infrared spectroscopy. Food Research International, 2014, 59, 53-60.	2.9	31
33	Determination of amorphous/rubbery states in freeze-dried prebiotic sugars using a combined approach of near-infrared spectroscopy and multivariate analysis. Food Research International, 2014, 64, 514-519.	2.9	33
34	Removal of cadmium by Lactobacillus kefir as a protective tool against toxicity – ERRATUM. Journal of Dairy Research, 2014, 81, 287-287.	0.7	0
35	Effect of cholesterol-poly(N,N-dimethylaminoethyl methacrylate) on the properties of stimuli-responsive polymer liposome complexes. Colloids and Surfaces B: Biointerfaces, 2013, 104, 254-261.	2.5	14
36	Use of whey permeate containing in situ synthesised galacto-oligosaccharides for the growth and preservation of <i>Lactobacillus plantarum</i> . Journal of Dairy Research, 2013, 80, 374-381.	0.7	39

#	Article	IF	CITATIONS
37	Effect of human defensins on lactobacilli and liposomes. Journal of Applied Microbiology, 2012, 113, 1491-1497.	1.4	21
38	Use of Raman spectroscopy and chemometrics for the quantification of metal ions attached to Lactobacillus kefir. Journal of Applied Microbiology, 2012, 112, 363-371.	1.4	24
39	Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix. International Journal of Food Microbiology, 2012, 155, 217-221.	2.1	56
40	Galacto-oligosaccharides as protective molecules in the preservation of Lactobacillus delbrueckii subsp. bulgaricus. Cryobiology, 2011, 62, 123-129.	0.3	52
41	FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions. Journal of Molecular Structure, 2011, 987, 186-192.	1.8	80
42	Fickean and Non-Fickean Water Desorption During Vacuum Drying of L. bulgaricus. Food Biophysics, 2010, 5, 34-40.	1.4	1
43	Critical water activity for the preservation of Lactobacillus bulgaricus by vacuum drying. International Journal of Food Microbiology, 2008, 128, 342-347.	2.1	54
44	Effect of sugars and growth media on the dehydration of Lactobacillus delbrueckii ssp. bulgaricus. Journal of Applied Microbiology, 2007, 102, 845-851.	1.4	46
45	Volume recovery, surface properties and membrane integrity of Lactobacillus delbrueckii subsp. bulgaricus dehydrated in the presence of trehalose or sucrose. Journal of Applied Microbiology, 2007, 103, 2410-2419.	1.4	37
46	Influence of the growth at high osmolality on the lipid composition, water permeability and osmotic response of Lactobacillus bulgaricus. Archives of Biochemistry and Biophysics, 2005, 443, 66-73.	1.4	52
47	Action of trehalose on the preservation of Lactobacillus delbrueckii ssp. bulgaricus by heat and osmotic dehydration. Journal of Applied Microbiology, 2003, 95, 1315-1320.	1.4	35
48	Fluorescent Dimers of Merocyanine 540 (MC540) in the Gel Phase of Phosphatidylcholine Liposomes. Photochemistry and Photobiology, 1999, 70, 40-48.	1.3	19
49	A combined approach of electronic spectroscopy and quantum chemical calculations to assess model membrane oxidation pathways. New Journal of Chemistry, 0, , .	1.4	Ο