Yafen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8273290/publications.pdf

Version: 2024-02-01

687220 752573 33 448 13 20 citations h-index g-index papers 33 33 33 397 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Fluorogenic labeling and single-base resolution analysis of 5-formylcytosine in DNA. Chemical Science, 2017, 8, 7443-7447.	3.7	42
2	Naphthalimide derivatives as multifunctional molecules for detecting 5-formylpyrimidine by both PAGE analysis and dot-blot assays. Chemical Communications, 2018, 54, 1497-1500.	2.2	37
3	Gene specific-loci quantitative and single-base resolution analysis of 5-formylcytosine by compound-mediated polymerase chain reaction. Chemical Science, 2018, 9, 3723-3728.	3.7	37
4	Enrichment and fluorogenic labelling of 5-formyluracil in DNA. Chemical Science, 2017, 8, 4505-4510.	3.7	36
5	Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA. Accounts of Chemical Research, 2019, 52, 1016-1024.	7.6	35
6	A highly efficient fluorescence-based switch-on detection method of 5-formyluracil in DNA. Nano Research, 2017, 10, 2449-2458.	5.8	27
7	Bisulfite-free, single base-resolution analysis of 5-hydroxymethylcytosine in genomic DNA by chemical-mediated mismatch. Chemical Science, 2019, 10, 447-452.	3.7	22
8	Selective Labeling Aldehydes in DNA. Analytical Chemistry, 2018, 90, 14616-14621.	3.2	19
9	Highly Selective 5-Formyluracil Labeling and Genome-wide Mapping Using (2-Benzimidazolyl)Acetonitrile Probe. IScience, 2018, 9, 423-432.	1.9	18
10	Right-handed and left-handed G-quadruplexes have the same DNA sequence: distinct conformations induced by an organic small molecule and potassium. Chemical Communications, 2016, 52, 10052-10055.	2.2	17
11	5â€Formyluracil as a Multifunctional Building Block in Biosensor Designs. Angewandte Chemie - International Edition, 2018, 57, 9689-9693.	7.2	17
12	Chemical methods and advanced sequencing technologies for deciphering mRNA modifications. Chemical Society Reviews, 2021, 50, 13481-13497.	18.7	15
13	A rapidly photo-activatable light-up fluorescent nucleoside and its application in DNA base variation sensing. Chemical Communications, 2016, 52, 8545-8548.	2.2	14
14	Ligation-Based qPCR-Amplification Assay for Radiolabel-Free Detection of ATP and NAD ⁺ with High Selectivity and Sensitivity. Analytical Chemistry, 2019, 91, 1665-1670.	3.2	13
15	Single-Base Resolution Mapping Reveals Distinct 5-Formylcytidine in <i>Saccharomyces cerevisiae</i> mRNAs. ACS Chemical Biology, 2022, 17, 77-84.	1.6	13
16	Highly Selective Detection of 5-Methylcytosine in Genomic DNA Based on Asymmetric PCR and Specific DNA Damaging Reagents. Analytical Chemistry, 2016, 88, 3348-3353.	3.2	11
17	The m ⁶ A methylation perturbs the Hoogsteen pairing-guided incorporation of an oxidized nucleotide. Chemical Science, 2017, 8, 6380-6388.	3.7	11
	A longitudinal sampling study of transcriptomic and epigenetic profiles in patients with	5.8	9

#	Article	IF	CITATIONS
19	Luminescence Sensing for Qualitative and Quantitative Detection of 5-Methylcytosine. Analytical Chemistry, 2018, 90, 10064-10068.	3.2	8
20	Base-Resolution Analysis of Deoxyuridine at the Genome Scale Based on the Artificial Incorporation Modified Nucleobase. ACS Central Science, 2021, 7, 973-979.	5. 3	8
21	Sequencing 5-Formyluracil in Genomic DNA at Single-Base Resolution. Analytical Chemistry, 2021, 93, 15445-15451.	3.2	7
22	End-labeling-based electrochemical strategy for detection of adenine methylation in nucleic acid by differential pulse voltammetry. Mikrochimica Acta, 2021, 188, 250.	2.5	5
23	One-pot fluorescent assay for sensitive detection of APOBEC3A activity. RSC Chemical Biology, 2021, 2, 1201-1205.	2.0	5
24	5â€Formyluracil as a Multifunctional Building Block in Biosensor Designs. Angewandte Chemie, 2018, 130, 9837-9841.	1.6	4
25	Labeling and sequencing nucleic acid modifications using bio-orthogonal tools. RSC Chemical Biology, 2022, 3, 994-1007.	2.0	4
26	Convenient and multiplexed detection of microRNAs based on an exonucleation reaction by conformational switch of hairpin probes. Sensors and Actuators B: Chemical, 2016, 222, 887-892.	4.0	3
27	Selective Chemical Labeling and Sequencing of 5-Carboxylcytosine in DNA at Single-Base Resolution. Analytical Chemistry, 2020, 92, 12710-12715.	3.2	3
28	Induction Stabilization and Fluorescence-based Switch-on Detection of G-Quadruplex by Zinc (II)-salen Complex. Acta Chimica Sinica, 2017, 75, 692.	0.5	3
29	Bisulfite-free and quantitative detection of 5-formylcytosine in DNA through qPCR. Chemical Communications, 2021, 57, 13796-13798.	2.2	3
30	Application of Ammonium Persulfate for Selective Oxidation of Guanines for Nucleic Acid Sequencing. Molecules, 2017, 22, 1222.	1.7	1
31	Highly sensitive detection of 6mA at single-base resolution based on A–C mismatch. Analyst, The, 2021, 146, 4450-4453.	1.7	1
32	A far-red emissive two-photon fluorescent probe for quantification of uracil in genomic DNA. Chemical Communications, 2021, 57, 2784-2787.	2.2	0
33	Chemical labelling for m6A detection: opportunities and challenges. Fundamental Research, 2022, 2, 56-58.	1.6	0