List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8273130/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 2018, 46, D1091-D1106.	6.5	1,584
2	The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Research, 2016, 44, D1054-D1068.	6.5	1,075
3	The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Research, 2014, 42, D1098-D1106.	6.5	826
4	Gonadotropin-Releasing Hormone Receptors. Endocrine Reviews, 2004, 25, 235-275.	8.9	698
5	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Enzymes. British Journal of Pharmacology, 2017, 174, S272-S359.	2.7	597
6	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G proteinâ€coupled receptors. British Journal of Pharmacology, 2017, 174, S17-S129.	2.7	557
7	The Concise Guide to PHARMACOLOGY 2013/14: G Protein oupled Receptors. British Journal of Pharmacology, 2013, 170, 1459-1581.	2.7	528
8	The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. British Journal of Pharmacology, 2015, 172, 6024-6109.	2.7	521
9	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	2.7	519
10	The Concise Guide to PHARMACOLOGY 2015/16: G protein oupled receptors. British Journal of Pharmacology, 2015, 172, 5744-5869.	2.7	507
11	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 2019, 176, S297-S396.	2.7	423
12	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Enzymes. British Journal of Pharmacology, 2013, 170, 1797-1867.	2.7	416
13	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	2.7	337
14	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 2021, 178, S313-S411.	2.7	320
15	Potent Action of RFamide-Related Peptide-3 on Pituitary Gonadotropes Indicative of a Hypophysiotropic Role in the Negative Regulation of Gonadotropin Secretion. Endocrinology, 2008, 149, 5811-5821.	1.4	301
16	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	2.7	295
17	A novel mammalian receptor for the evolutionarily conserved type II GnRH. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9636-9641.	3.3	292
18	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	2.7	269

#	Article	IF	CITATIONS
19	International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands. Pharmacological Reviews, 2013, 65, 967-986.	7.1	250
20	Identification of Human GnIH Homologs, RFRP-1 and RFRP-3, and the Cognate Receptor, GPR147 in the Human Hypothalamic Pituitary Axis. PLoS ONE, 2009, 4, e8400.	1.1	242
21	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	2.7	242
22	The Concise Guide to PHARMACOLOGY 2013/14: Ion Channels. British Journal of Pharmacology, 2013, 170, 1607-1651.	2.7	226
23	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	2.7	220
24	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Transporters. British Journal of Pharmacology, 2017, 174, S360-S446.	2.7	193
25	The Concise Guide to PHARMACOLOGY 2015/16: Transporters. British Journal of Pharmacology, 2015, 172, 6110-6202.	2.7	190
26	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	2.7	187
27	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	2.7	183
28	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Voltageâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S160-S194.	2.7	178
29	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Catalytic receptors. British Journal of Pharmacology, 2017, 174, S225-S271.	2.7	177
30	The Concise Guide to PHARMACOLOGY 2015/16: Voltageâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5904-5941.	2.7	176
31	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 2019, 176, S397-S493.	2.7	166
32	The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors. British Journal of Pharmacology, 2015, 172, 5979-6023.	2.7	158
33	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	2.7	156
34	Gonadotropin-Releasing Hormone (GnRH) Antagonists Promote Proapoptotic Signaling in Peripheral Reproductive Tumor Cells by Activating a Gαi-Coupling State of the Type I GnRH Receptor. Cancer Research, 2004, 64, 7533-7544.	0.4	153
35	The Concise Guide to PHARMACOLOGY 2013/14: Overview. British Journal of Pharmacology, 2013, 170, 1449-1458.	2.7	153
36	The Concise Guide to PHARMACOLOGY 2013/14: Catalytic Receptors. British Journal of Pharmacology, 2013, 170, 1676-1705.	2.7	148

3

#	Article	IF	CITATIONS
37	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	2.7	148
38	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Ligandâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S130-S159.	2.7	144
39	The Concise Guide to PHARMACOLOGY 2015/16: Ligandâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5870-5903.	2.7	133
40	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Nuclear hormone receptors. British Journal of Pharmacology, 2017, 174, S208-S224.	2.7	131
41	The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Research, 2020, 48, D1006-D1021.	6.5	131
42	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 2019, 176, S229-S246.	2.7	127
43	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Transporters. British Journal of Pharmacology, 2013, 170, 1706-1796.	2.7	121
44	The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British Journal of Pharmacology, 2015, 172, 5956-5978.	2.7	119
45	Diversity of actions of GnRHs mediated by ligand-induced selective signaling. Frontiers in Neuroendocrinology, 2008, 29, 17-35.	2.5	116
46	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Ligandâ€Gated Ion Channels. British Journal of Pharmacology, 2013, 170, 1582-1606.	2.7	115
47	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters. British Journal of Pharmacology, 2021, 178, S412-S513.	2.7	114
48	A Transcriptionally Active Human Type II Gonadotropin-Releasing Hormone Receptor Gene Homolog Overlaps Two Genes in the Antisense Orientation on Chromosome 1q.12. Endocrinology, 2003, 144, 423-436.	1.4	110
49	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Nuclear hormone receptors. British Journal of Pharmacology, 2021, 178, S246-S263.	2.7	100
50	The IUPHAR/BPS guide to PHARMACOLOGY in 2022: curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Research, 2022, 50, D1282-D1294.	6.5	99
51	IUPHAR-DB: updated database content and new features. Nucleic Acids Research, 2013, 41, D1083-D1088.	6.5	94
52	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Nuclear Hormone Receptors. British Journal of Pharmacology, 2013, 170, 1652-1675.	2.7	90
53	Type II gonadotrophin-releasing hormone (GnRH-II) in reproductive biology. Reproduction, 2003, 126, 271-278.	1.1	85
54	Contrasting internalization kinetics of human and chicken gonadotropin-releasing hormone receptors mediated by C-terminal tail. Journal of Endocrinology, 1998, 156, R9-12.	1.2	77

#	Article	IF	CITATIONS
55	The pituitary effects of GnRH. Animal Reproduction Science, 2005, 88, 75-94.	0.5	76
56	Cytoskeletal Reorganization Dependence of Signaling by the Gonadotropin-releasing Hormone Receptor. Journal of Biological Chemistry, 2004, 279, 1980-1993.	1.6	73
57	Activation of Mitogen-activated protein kinase (MAPK) by GnRH is cell-context dependent. Molecular and Cellular Endocrinology, 2006, 252, 184-190.	1.6	70
58	A rational roadmap for SARSâ€CoVâ€2/COVIDâ€19 pharmacotherapeutic research and development: IUPHAR Review 29. British Journal of Pharmacology, 2020, 177, 4942-4966.	2.7	61
59	Mammalian Type I Gonadotropin-Releasing Hormone Receptors Undergo Slow, Constitutive, Agonist-Independent Internalization. Endocrinology, 2008, 149, 1415-1422.	1.4	59
60	Kisspeptin antagonists: Unraveling the role of kisspeptin in reproductive physiology. Brain Research, 2010, 1364, 81-89.	1.1	58
61	Irreversible Activation of the Gonadotropin-Releasing Hormone Receptor by Photoaffinity Cross-Linking:  Localization of Attachment Site to Cys Residue in N-Terminal Segment. Biochemistry, 1997, 36, 12881-12889.	1.2	52
62	Gonadotropin-releasing Hormone-induced Activation of Diacylglycerol Kinase-ζ and Its Association with Active c-Src. Journal of Biological Chemistry, 2004, 279, 11906-11916.	1.6	48
63	Nuclear Stabilization of β-Catenin and Inactivation of Glycogen Synthase Kinase-3β by Gonadotropin-Releasing Hormone: Targeting Wnt Signaling in the Pituitary Gonadotrope. Molecular Endocrinology, 2007, 21, 3028-3038.	3.7	48
64	Sheep Exhibit Novel Variations in the Organization of the Mammalian Type II Gonadotropin-Releasing Hormone Receptor Gene. Endocrinology, 2004, 145, 2362-2374.	1.4	45
65	Multiple Determinants for Rapid Agonist-Induced Internalization of a Nonmammalian Gonadotropin-Releasing Hormone Receptor: A Putative Palmitoylation Site and Threonine Doublet within the Carboxyl-Terminal Tail Are Critical. Endocrinology, 2003, 144, 3860-3871.	1.4	44
66	Reciprocal Cross Talk between Gonadotropin-Releasing Hormone (GnRH) and Prostaglandin Receptors Regulates GnRH Receptor Expression and Differential Gonadotropin Secretion. Molecular Endocrinology, 2007, 21, 524-537.	3.7	42
67	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Other ion channels. British Journal of Pharmacology, 2017, 174, S195-S207.	2.7	41
68	Outside-In and Inside-Out Signaling: The New Concept that Selectivity of Ligand Binding at the Gonadotropin-Releasing Hormone Receptor Is Modulated by the Intracellular Environment. Endocrinology, 2004, 145, 3590-3593.	1.4	40
69	Inhibition of Human Type I Gonadotropin-Releasing Hormone Receptor (GnRHR) Function by Expression of a Human Type II GnRHR Gene Fragment. Endocrinology, 2005, 146, 2639-2649.	1.4	40
70	The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels. British Journal of Pharmacology, 2015, 172, 5942-5955.	2.7	40
71	Proline-Rich Tyrosine Kinase 2 Mediates Gonadotropin-Releasing Hormone Signaling to a Specific Extracellularly Regulated Kinase-Sensitive Transcriptional Locus in the Luteinizing Hormone Î ² -Subunit Gene. Molecular Endocrinology, 2007, 21, 1216-1233.	3.7	39
72	Evolution of Constrained Gonadotropin-releasing Hormone Ligand Conformation and Receptor Selectivity. Journal of Biological Chemistry, 2005, 280, 38569-38575.	1.6	37

#	Article	IF	CITATIONS
73	Bovine and Ovine Gonadotropin-Releasing Hormone (GnRH)-II Ligand Precursors and Type II GnRH Receptor Genes Are Functionally Inactivated. Endocrinology, 2006, 147, 5041-5051.	1.4	36
74	Gonadotropin-Releasing Hormone Analog Structural Determinants of Selectivity for Inhibition of Cell Growth: Support for the Concept of Ligand-Induced Selective Signaling. Molecular Endocrinology, 2008, 22, 1711-1722.	3.7	31
75	Gonadotropin-Releasing Hormone Functionally Antagonizes Testosterone Activation of the Human Androgen Receptor in Prostate Cells through Focal Adhesion Complexes Involving Hic-5. Neuroendocrinology, 2006, 84, 285-300.	1.2	30
76	A role for intracellular calcium downstream of G-protein signaling in undifferentiated human embryonic stem cell culture. Stem Cell Research, 2012, 9, 171-184.	0.3	22
77	A single amino acid substitution in transmembrane helix VI results in overexpression of the human GnRH receptor. European Journal of Endocrinology, 1998, 139, 438-447.	1.9	20
78	Serine Residues 338 and 339 in the Carboxyl-Terminal Tail of the Type II Gonadotropin-Releasing Hormone Receptor Are Critical for β-Arrestin-Independent Internalization. Endocrinology, 2004, 145, 4480-4488.	1.4	19
79	Changes to Gonadotropin-Releasing Hormone (GnRH) Receptor Extracellular Loops Differentially Affect GnRH Analog Binding and Activation: Evidence for Distinct Ligand-Stabilized Receptor Conformations. Endocrinology, 2008, 149, 3118-3129.	1.4	18
80	Targeting mediators of Wnt signalling pathways by GnRH in gonadotropes. Journal of Molecular Endocrinology, 2010, 44, 195-201.	1.1	18
81	GnRH-Mediated DAN Production Regulates the Transcription of the GnRH Receptor in Gonadotrope Cells. NeuroMolecular Medicine, 2007, 9, 230-248.	1.8	17
82	Emerging Targets of the GnRH Receptor: Novel Interactions with Wnt Signalling Mediators. Neuroendocrinology, 2009, 89, 241-251.	1.2	13
83	Elucidation of Mechanisms of the Reciprocal Cross Talk between Gonadotropin-Releasing Hormone and Prostaglandin Receptors. Endocrinology, 2010, 151, 2700-2712.	1.4	13
84	Accessing Expert urated Pharmacological Data in the IUPHAR/BPS Guide to PHARMACOLOGY. Current Protocols in Bioinformatics, 2018, 61, 1.34.1-1.34.46.	25.8	13
85	A new photoreactive antagonist cross-links to the N-terminal domain of the gonadotropin-releasing hormone receptor. Molecular and Cellular Endocrinology, 1999, 156, 179-188.	1.6	9
86	Identification of Ser153 in ICL2 of the Gonadotropin-releasing Hormone (GnRH) Receptor as a Phosphorylation-independent Site for Inhibition of Gq Coupling. Journal of Biological Chemistry, 2005, 280, 28981-28988.	1.6	9
87	BJP is linking its articles to the IUPHAR/BPS Guide to PHARMACOLOGY. British Journal of Pharmacology, 2015, 172, 2929-2932.	2.7	8
88	Why data citation isn't working, and what to do about it. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	8
89	Class A Orphans (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
90	The IUPHAR Guide to Immunopharmacology: connecting immunology and pharmacology. Immunology, 2020, 160, 10-23.	2.0	7

#	Article	IF	CITATIONS
91	Class A Orphans (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	7
92	GuideToPharmacology.org – an update. British Journal of Pharmacology, 2012, 167, 697-698.	2.7	3
93	Challenges of Connecting Chemistry to Pharmacology: Perspectives from Curating the IUPHAR/BPS Guide to PHARMACOLOGY. ACS Omega, 2018, 3, 8408-8420.	1.6	3
94	Class A Orphans in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
95	The Guide to PHARMACOLOGY portal: A one-stop pharmacology shop. Biochemist, 2013, 35, 36-39.	0.2	2
96	Glycoprotein hormone receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	1
97	Gonadotrophin-releasing hormone receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
98	GnRH Regulates LHbeta Sub-Unit Expression through a FOXO3a-Mediated Mechanism , 2010, , P1-112-P1-112.		0
99	Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
100	Gonadotrophin-releasing hormone receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
101	Kisspeptin receptor (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	0
102	Prokineticin receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	0