Eduardo V Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8272972/publications.pdf

Version: 2024-02-01

71 papers

2,587 citations

201575 27 h-index 206029 48 g-index

72 all docs 72 docs citations

times ranked

72

3017 citing authors

#	Article	IF	CITATIONS
1	Perspective on the biotechnological production of bacterial siderophores and their use. Applied Microbiology and Biotechnology, 2022, 106, 3985-4004.	1.7	29
2	Modulation of Siderophore Production by Pseudomonas fluorescens Through the Manipulation of the Culture Medium Composition. Applied Biochemistry and Biotechnology, 2021, 193, 607-618.	1.4	12
3	Exposure of the alga Pseudokirchneriella subcapitata to environmentally relevant concentrations of the herbicide metolachlor: Impact on the redox homeostasis. Ecotoxicology and Environmental Safety, 2021, 207, 111264.	2.9	21
4	Toxicological effects induced by the biocide triclosan on Pseudokirchneriella subcapitata. Aquatic Toxicology, 2021, 230, 105706.	1.9	15
5	Harmful effects of metal(loid) oxide nanoparticles. Applied Microbiology and Biotechnology, 2021, 105, 1379-1394.	1.7	27
6	Reproductive cycle progression arrest and modification of cell morphology (shape and biovolume) in the alga Pseudokirchneriella subcapitata exposed to metolachlor. Aquatic Toxicology, 2020, 222, 105449.	1.9	19
7	Sensitivity of freshwater and marine green algae to three compounds of emerging concern. Journal of Applied Phycology, 2019, 31, 399-408.	1.5	28
8	Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions. AMB Express, 2019, 9, 78.	1.4	84
9	Chronic exposure of the freshwater alga Pseudokirchneriella subcapitata to five oxide nanoparticles: Hazard assessment and cytotoxicity mechanisms. Aquatic Toxicology, 2019, 214, 105265.	1.9	17
10	Nickel Oxide Nanoparticles Trigger Caspase- and Mitochondria-Dependent Apoptosis in the Yeast <i>Saccharomyces cerevisiae</i> . Chemical Research in Toxicology, 2019, 32, 245-254.	1.7	9
11	Impact of erythromycin on a non-target organism: Cellular effects on the freshwater microalga Pseudokirchneriella subcapitata. Aquatic Toxicology, 2019, 208, 179-186.	1.9	42
12	Metal(loid) oxide (Al2O3, Mn3O4, SiO2 and SnO2) nanoparticles cause cytotoxicity in yeast via intracellular generation of reactive oxygen species. Applied Microbiology and Biotechnology, 2019, 103, 6257-6269.	1.7	14
13	Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of the Total Environment, 2019, 682, 779-799.	3.9	146
14	Evaluation of the Efficacy of Two New Biotechnological-Based Freeze-Dried Fertilizers for Sustainable Fe Deficiency Correction of Soybean Plants Grown in Calcareous Soils. Frontiers in Plant Science, 2019, 10, 1335.	1.7	15
15	Nickel oxide (NiO) nanoparticles disturb physiology and induce cell death in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2018, 102, 2827-2838.	1.7	18
16	Toxic effects of nickel oxide (NiO) nanoparticles on the freshwater alga Pseudokirchneriella subcapitata. Aquatic Toxicology, 2018, 204, 80-90.	1.9	38
17	Nickel Oxide (NiO) Nanoparticles Induce Loss of Cell Viability in Yeast Mediated by Oxidative Stress. Chemical Research in Toxicology, 2018, 31, 658-665.	1.7	26
18	A multi-metal risk assessment strategy for natural freshwater ecosystems based on the additive inhibitory free metal ion concentration index. Environmental Pollution, 2017, 223, 517-523.	3.7	7

#	Article	IF	CITATIONS
19	Improvement of the slide culture technique for the assessment of yeast viability. Journal of the Institute of Brewing, 2017, 123, 39-44.	0.8	3
20	Influence of the metabolic state on the tolerance of <i>Pichia kudriavzevii</i> to heavy metals. Journal of Basic Microbiology, 2016, 56, 1244-1251.	1.8	1
21	Short―and Longâ€Term Exposure to Heavy Metals Induced Oxidative Stress Response in <i>Pseudokirchneriella</i> s <i>ubcapitata</i> Clean - Soil, Air, Water, 2016, 44, 1578-1583.	0.7	23
22	Toxicity Induced by a Metal Mixture (Cd, Pb and Zn) in the Yeast Pichia kudriavzevii: The Role of Oxidative Stress. Current Microbiology, 2016, 72, 545-550.	1.0	18
23	Quantification and viability analyses of Pseudokirchneriella subcapitata algal cells using image-based cytometry. Journal of Applied Phycology, 2015, 27, 703-710.	1.5	4
24	ABCC Subfamily Vacuolar Transporters are Involved in Pb (Lead) Detoxification in Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2015, 175, 65-74.	1.4	28
25	Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. Journal of Hazardous Materials, 2015, 296, 82-92.	6.5	62
26	Impact of multi-metals (Cd, Pb and Zn) exposure on the physiology of the yeast Pichia kudriavzevii. Environmental Science and Pollution Research, 2015, 22, 11127-11136.	2.7	7
27	(Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review. RSC Advances, 2015, 5, 30989-31003.	1.7	249
28	Use of a fluorescence-based approach to assess short-term responses of the alga Pseudokirchneriella subcapitata to metal stress. Journal of Applied Phycology, 2015, 27, 805-813.	1.5	19
29	Saccharomyces cerevisiae Mutants Affected in Vacuole Assembly or Vacuolar H+-ATPase are Hypersensitive to Lead (Pb) Toxicity. Current Microbiology, 2014, 68, 113-119.	1.0	5
30	Siderophore Production by Bacillus megaterium: Effect of Growth Phase and Cultural Conditions. Applied Biochemistry and Biotechnology, 2014, 172, 549-560.	1.4	51
31	Mitochondria are the main source and one of the targets of Pb (lead)-induced oxidative stress in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2014, 98, 5153-5160.	1.7	42
32	Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. Aquatic Toxicology, 2014, 147, 1-6.	1.9	54
33	Alternative chelating agents: Evaluation of the ready biodegradability and complexation properties. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 344-354.	0.9	7
34	Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry. Applied Microbiology and Biotechnology, 2013, 97, 6667-6675.	1.7	25
35	Evaluation of the Role of Glutathione in the Lead-Induced Toxicity in Saccharomyces cerevisiae. Current Microbiology, 2013, 67, 300-305.	1.0	17
36	Optimization of a Microplate-Based Assay to Assess Esterase Activity in the Alga Pseudokirchneriella subcapitata. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	17

3

#	Article	IF	Citations
37	Assessment of cellular reduced glutathione content in Pseudokirchneriella subcapitata using monochlorobimane. Journal of Applied Phycology, 2012, 24, 1509-1516.	1.5	14
38	Development of a short-term assay based on the evaluation of the plasma membrane integrity of the alga Pseudokirchneriella subcapitata. Applied Microbiology and Biotechnology, 2012, 95, 1035-1042.	1.7	28
39	Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environmental Science and Pollution Research, 2012, 19, 1066-1083.	2.7	110
40	Flocculation in ale brewing strains of Saccharomyces cerevisiae: re-evaluation of the role of cell surface charge and hydrophobicity. Applied Microbiology and Biotechnology, 2012, 93, 1221-1229.	1.7	28
41	Flocculation in Saccharomyces cerevisiae: a review. Journal of Applied Microbiology, 2011, 110, 1-18.	1.4	229
42	Lead induces oxidative stress and phenotypic markers of apoptosis in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2011, 90, 679-687.	1.7	37
43	Selective recovery of chromium, copper, nickel, and zinc from an acid solution using an environmentally friendly process. Environmental Science and Pollution Research, 2011, 18, 1279-1285.	2.7	21
44	Impact of fluorides on the removal of heavy metals from an electroplating effluent using a flocculent brewer's yeast strain ofSaccharomyces cerevisiae. Chemical Speciation and Bioavailability, 2011, 23, 237-242.	2.0	4
45	Lead toxicity in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010, 88, 1355-1361.	1.7	21
46	Removal of Chromium, Copper, and Nickel from an Electroplating Effluent Using a Flocculent Brewer's Yeast Strain of Saccharomyces cerevisiae. Water, Air, and Soil Pollution, 2010, 212, 199-204.	1.1	33
47	Removal of heavy metals using a brewer's yeast strain of <i>Saccharomyces cerevisiae</i> : application to the treatment of real electroplating effluents containing multielements. Journal of Chemical Technology and Biotechnology, 2010, 85, 1353-1360.	1.6	22
48	Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: Chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. Journal of Hazardous Materials, 2010, 180, 347-353.	6.5	86
49	Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents. Journal of Hazardous Materials, 2010, 184, 357-363.	6.5	30
50	Flocculation in Saccharomyces Cerevisiae., 2009,, 103-112.		2
51	Removal of heavy metals using a brewer's yeast strain of <i>Saccharomyces cerevisiae</i> : advantages of using dead biomass. Journal of Applied Microbiology, 2009, 106, 1792-1804.	1.4	77
52	Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: The flocculation as a separation process. Bioresource Technology, 2008, 99, 2107-2115.	4.8	102
53	Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress. Journal of Applied Microbiology, 2007, 102, 693-700.	1.4	48
54	Separation of yeasts by addition of flocculent cells of Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2007, 23, 1401-1407.	1.7	10

#	Article	IF	Citations
55	Flocculation onset in Saccharomyces cerevisiae: the role of nutrients. Journal of Applied Microbiology, 2005, 98, 525-531.	1.4	65
56	Carbohydrate carbon sources induce loss of flocculation of an ale-brewing yeast strain. Journal of Applied Microbiology, 2004, 96, 1117-1123.	1.4	24
57	Pb2+Inhibits Competitively Flocculation of Saccharomyces cerevisiae. Journal of the Institute of Brewing, 2004, 110, 141-145.	0.8	13
58	Effect of different starvation conditions on the flocculation of Saccharomyces cerevisiae. Journal of Applied Microbiology, 2003, 95, 325-330.	1.4	31
59	Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae: a comparative study. Canadian Journal of Microbiology, 2003, 49, 336-343.	0.8	66
60	Viability and release of complexing compounds during accumulation of heavy metals by a brewer's yeast. Applied Microbiology and Biotechnology, 2002, 58, 836-841.	1.7	31
61	Title is missing!. Biotechnology Letters, 2002, 24, 663-666.	1.1	37
62	Title is missing!. Biotechnology Letters, 2002, 24, 1957-1960.	1.1	13
63	Title is missing!. Biotechnology Letters, 2000, 22, 1827-1832.	1.1	18
64	Title is missing!. Biotechnology Letters, 2000, 22, 859-863.	1.1	17
65	Study of the suitability of 2-(N-morpholino) ethanesulfonic acid pH buffer for heavy metals accumulation studies using <i>Saccharomyces cerevisiae < i>. Chemical Speciation and Bioavailability, 2000, 12, 59-65.</i>	2.0	14
66	QUANTIFICATION OF YEAST FLOCCULATION. Journal of the Institute of Brewing, 1997, 103, 93-98.	0.8	30
67	Flocculation onset, growth phase, and genealogical age in <i>Saccharomyces cerevisiae</i> Journal of Microbiology, 1996, 42, 539-547.	0.8	47
68	Population dynamics of flocculating yeasts. FEMS Microbiology Reviews, 1994, 14, 45-51.	3.9	6
69	Effect of cultural and nutritional conditions on the control of flocculation expression in <i>Saccharomyces cerevisiae</i> . Canadian Journal of Microbiology, 1994, 40, 851-857.	0.8	42
70	Interaction between flocculent and nonflocculent cells of Saccharomyces cerevisiae. Canadian Journal of Microbiology, 1992, 38, 969-974.	0.8	15
71	Influence of aeration and glucose concentration in the flocculation of Saccharomyces cerevisiae. Biotechnology Letters, 1991, 13, 207-212.	1.1	16