Dominic Agyei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8272925/publications.pdf

Version: 2024-02-01

218677 233421 2,264 76 26 45 h-index citations g-index papers 83 83 83 2612 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Anti-diabetic effects of bioactive peptides: recent advances and clinical implications. Critical Reviews in Food Science and Nutrition, 2022, 62, 2158-2171.	10.3	30
2	Macronutrients and mineral composition of wild harvested <i>Prionoplus reticularis</i> edible insect at various development stages: nutritional and mineral safety implications. International Journal of Food Science and Technology, 2022, 57, 6270-6278.	2.7	8
3	Food quality monitoring through bioinformatics and big data. , 2022, , 733-744.		6
4	Proximate composition and lipid nutritional indices of larvae and pupae of the edible Huhu beetle (Prionoplus reticularis) endemic to New Zealand. Journal of Food Composition and Analysis, 2022, 110, 104578.	3.9	4
5	Edible insects: A bibliometric analysis and current trends of published studies (1953–2021). International Journal of Tropical Insect Science, 2022, 42, 3335-3355.	1.0	4
6	Anticholinesterase Inhibition, Drug-Likeness Assessment, and Molecular Docking Evaluation of Milk Protein-Derived Opioid Peptides for the Control of Alzheimer's Disease. Dairy, 2022, 3, 422-437.	2.0	1
7	Lipid nutritional indices, regioisomeric distribution, and thermal properties of Tenebrio molitor and Hermetia illucens larvae fat. Journal of Asia-Pacific Entomology, 2022, 25, 101951.	0.9	5
8	Cellâ€envelope proteinases from lactic acid bacteria: Biochemical features and biotechnological applications. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 369-400.	11.7	33
9	Bioinformatics and Chemometrics for Discovering Biologically Active Peptides From Food Proteins. , 2021, , 482-494.		3
10	Enrichment in specific fatty acids profile of Tenebrio molitor and Hermetia illucens larvae through feeding. Future Foods, 2021, 3, 100016.	5.4	33
11	Kinetics of Colour Development during Frying of Potato Pre-Treated with Pulsed Electric Fields and Blanching: Effect of Cultivar. Foods, 2021, 10, 2307.	4.3	7
12	Production and identification of galacto-oligosaccharides from lactose using \hat{l}^2 -D-galactosidases from Lactobacillus leichmannii 313. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100038.	2.6	4
13	Improving resveratrol bioavailability using water-in-oil-in-water (W/O/W) emulsion: Physicochemical stability, in vitro digestion resistivity and transport properties. Journal of Functional Foods, 2021, 87, 104717.	3.4	12
14	CHAPTER 17. Advances in the Use of Bioinformatics to Discover Biofunctional Food Peptides. Food Chemistry, Function and Analysis, 2021, , 426-459.	0.2	O
15	Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	16
16	Aptamers: an emerging class of bioaffinity ligands in bioactive peptide applications. Critical Reviews in Food Science and Nutrition, 2020, 60, 1195-1206.	10.3	29
17	Indigenous African fermented dairy products: Processing technology, microbiology and health benefits. Critical Reviews in Food Science and Nutrition, 2020, 60, 991-1006.	10.3	40
18	Understanding the impact of Pulsed Electric Fields treatment on the thermal and pasting properties of raw and thermally processed oat flours. Food Research International, 2020, 129, 108839.	6.2	35

#	Article	IF	CITATIONS
19	Structural Features, Modification, and Functionalities of Beta-Glucan. Fibers, 2020, 8, 1.	4.0	95
20	Revisiting the scope and applications of food enzymes from extremophiles. Journal of Food Biochemistry, 2020, 44, e13475.	2.9	12
21	Preparation and assessment of cross-linked enzyme aggregates (CLEAs) of \hat{l}^2 -galactosidase from Lactobacillus leichmannii 313. Food and Bioproducts Processing, 2020, 124, 82-96.	3.6	9
22	Medicinal Chemistry Friendliness of Pigments from Monascus-Fermented Rice and the Molecular Docking Analysis of Their Anti-Hyperlipidemia Properties. Fermentation, 2020, 6, 111.	3.0	6
23	Microbial Safety of Milk Production and Fermented Dairy Products in Africa. Microorganisms, 2020, 8, 752.	3.6	56
24	Modifications in the physicochemical properties of flour "fractions―after Pulsed Electric Fields treatment of thermally processed oat. Innovative Food Science and Emerging Technologies, 2020, 64, 102406.	5 . 6	10
25	Physicochemical characterisation, molecular docking, and drug-likeness evaluation of hypotensive peptides encrypted in flaxseed proteome. Current Research in Food Science, 2020, 3, 41-50.	5.8	46
26	Optimization of \hat{l}^2 -galactosidase Production by Batch Cultures of Lactobacillus leichmannii 313 (ATCC) Tj ETQc	0 0 <u>9 r</u> gBT	Overlock 10
27	The Role of Bioinformatics in the Discovery of Bioactive Peptides. , 2019, , 337-344.		5
28	Food for Oxidative Stress Relief: Polyphenols. , 2019, , 392-398.		4
29	Antioxidant peptides encrypted in flaxseed proteome: An in silico assessment. Food Science and Human Wellness, 2019, 8, 306-314.	4.9	37
30	Purification, characterization and thermal inactivation kinetics of \hat{l}^2 -galactosidase from Lactobacillus leichmannii 313. LWT - Food Science and Technology, 2019, 116, 108545.	5.2	12
31	Understanding the Properties of Starch in Potatoes (Solanum tuberosum var. Agria) after Being Treated with Pulsed Electric Field Processing. Foods, 2019, 8, 159.	4.3	27
31	Understanding the Properties of Starch in Potatoes (Solanum tuberosum var. Agria) after Being Treated with Pulsed Electric Field Processing. Foods, 2019, 8, 159. Enzymes for Use in Functional Foods., 2019, , 129-147.	4.3	27
	Treated with Pulsed Electric Field Processing. Foods, 2019, 8, 159.	4.3	
32	Treated with Pulsed Electric Field Processing. Foods, 2019, 8, 159. Enzymes for Use in Functional Foods., 2019, , 129-147.	2.9	4
32	Treated with Pulsed Electric Field Processing. Foods, 2019, 8, 159. Enzymes for Use in Functional Foods., 2019, , 129-147. Food Enzymes From Extreme Environments: Sources and Bioprocessing., 2019, , 795-816.		5

#	Article	IF	CITATIONS
37	Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry, 2018, 410, 3463-3472.	3.7	127
38	Recovery and utilization of seaweed pigments in food processing. Current Opinion in Food Science, 2018, 19, 113-119.	8.0	102
39	Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food. Analytical and Bioanalytical Chemistry, 2018, 410, 297-306.	3.7	14
40	Aptameric Sensing in Food Safety. , 2018, , 259-277.		4
41	Use of Plant Proteolytic Enzymes for Meat Processing. , 2018, , 43-67.		6
42	Bioprocessing of Functional Ingredients from Flaxseed. Molecules, 2018, 23, 2444.	3.8	79
43	Plant RuBisCo: An Underutilized Protein for Food Applications. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1063-1074.	1.9	54
44	Coacervation Technique as an Encapsulation and Delivery Tool for Hydrophobic Biofunctional Compounds., 2018,, 235-261.		10
45	Structural Basis of Bioactivity of Food Peptides in Promoting Metabolic Health. Advances in Food and Nutrition Research, 2018, 84, 145-181.	3.0	17
46	Peptides for biopharmaceutical applications. , 2018, , 231-251.		8
47	Process Development for Bioactive Peptide Production. , 2017, , 91-110.		7
48	Ribulose-1,5-bisphosphate carboxylase as a sustainable and promising plant source of bioactive peptides for food applications. Trends in Food Science and Technology, 2017, 69, 74-82.	15.1	43
49	Formulation of water-in-oil-in-water (W/O/W) emulsions containing trans-resveratrol. RSC Advances, 2017, 7, 35917-35927.	3.6	71
50	Synthesis and characterization of calcium-induced peanut protein isolate nanoparticles. RSC Advances, 2017, 7, 53247-53254.	3.6	8
51	Bioprocessing of Plant-Derived Bioactive Phenolic Compounds. , 2017, , 135-181.		4
52	Nano-Doped Monolithic Materials for Molecular Separation. Separations, 2017, 4, 2.	2.4	16
53	Bioactivity Profiling of Peptides From Food Proteins. , 2017, , 49-77.		5
54	Editorial (Thematic Issue: Emerging Biopharmaceuticals from Bioactive Peptides). Protein and Peptide Letters, 2017, 24, 92-93.	0.9	0

#	Article	IF	Citations
55	Protein and Peptide Biopharmaceuticals: An Overview. Protein and Peptide Letters, 2017, 24, 94-101.	0.9	48
56	Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 2016, 98, 244-256.	3.6	200
57	Deploying aptameric sensing technology for rapid pandemic monitoring. Critical Reviews in Biotechnology, 2016, 36, 1010-1022.	9.0	25
58	Stabilizing and destabilizing protein surfactant-based foams in the presence of a chemical surfactant: Effect of adsorption kinetics. Journal of Colloid and Interface Science, 2016, 462, 56-63.	9.4	8
59	Bioactive Proteins and Peptides from Soybeans. Recent Patents on Food, Nutrition & Agriculture, 2015, 7, 100-107.	0.9	48
60	Evaluation of cross-linked enzyme aggregates of Lactobacillus cell-envelope proteinases, for protein degradation. Food and Bioproducts Processing, 2015, 94, 59-69.	3.6	31
61	Enzymes for food waste remediation and valorisation. , 2015, , 123-145.		6
62	Enzyme engineering (immobilization) for food applications. , 2015, , 213-235.		7
63	Antioxidative Peptides Derived from Food Proteins. , 2015, , 417-430.		13
64	Parametric Investigation of Batch Adsorption of Proteins onto Polymeric Particles. Current Pharmaceutical Biotechnology, 2015, 16, 816-822.	1.6	1
65	A Simple Microfluidic Chip Design for Fundamental Bioseparation. Journal of Analytical Methods in Chemistry, 2014, 2014, 1-6.	1.6	21
66	A Parametric Study of a Monolithic Microfluidic System for On-Chip Biomolecular Separation. Separation Science and Technology, 2014, 49, 854-860.	2.5	15
67	Quick and low cost immobilization of proteinases on polyesters: Comparison of lactobacilli cell-envelope proteinase and trypsin for protein degradation. Journal of Biotechnology, 2014, 188, 53-60.	3.8	18
68	Bioanalytical evaluation of Lactobacillus delbrueckii subsp. lactis 313 cell-envelope proteinase extraction. Chemical Engineering Science, 2013, 95, 323-330.	3.8	12
69	Hygienic Practices among Food Vendors in Educational Institutions in Ghana: The Case of Konongo. Foods, 2013, 2, 282-294.	4.3	42
70	Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends in Food Science and Technology, 2012, 23, 62-69.	15.1	98
71	Optimisation of Batch Culture Conditions for Cell-Envelope-Associated Proteinase Production from Lactobacillus delbrueckii subsp. lactis ATCC® 7830â,,¢. Applied Biochemistry and Biotechnology, 2012, 168, 1035-1050.	2.9	19
72	Carbohydrate utilization affects Lactobacillus delbrueckii subsp. lactis 313 cell-enveloped-associated proteinase production. Biotechnology and Bioprocess Engineering, 2012, 17, 787-794.	2.6	12

#	Article	IF	CITATIONS
73	In-depth characterization of Lactobacillus delbrueckii subsp. lactis 313 for growth and cell-envelope-associated proteinase production. Biochemical Engineering Journal, 2012, 64, 61-68.	3.6	20
74	Pharmaceutical applications of bioactive peptides. OA Biotechnology, 2012, 1, .	0.5	60
75	Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances, 2011, 29, 272-277.	11.7	284
76	Plant-Based Alkaline Fermented Foods as Sustainable Sources of Nutrients and Health-Promoting Bioactive Compounds. Frontiers in Sustainable Food Systems, 0, 6, .	3.9	6