Michail Diamantakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8272716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1999-2049.	2.7	10,272
2	An inherently massâ€conserving semiâ€implicit semiâ€Lagrangian discretization of the deepâ€atmosphere global nonâ€hydrostatic equations. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1505-1520.	2.7	333
3	Tropospheric chemistry in the Integrated Forecasting System of ECMWF. Geoscientific Model Development, 2015, 8, 975-1003.	3.6	204
4	Stochastic representations of model uncertainties at ECMWF: state of the art and future vision. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2315-2339.	2.7	170
5	Characteristics of Occasional Poor Medium-Range Weather Forecasts for Europe. Bulletin of the American Meteorological Society, 2013, 94, 1393-1405.	3.3	139
6	Modelling CO ₂ weather – why horizontal resolution matters. Atmospheric Chemistry and Physics, 2019, 19, 7347-7376.	4.9	49
7	Improving the inter-hemispheric gradient of total column atmospheric CO ₂ and CH ₄ in simulations with the ECMWF semi-Lagrangian atmospheric global model. Geoscientific Model Development. 2017. 10. 1-18.	3.6	46
8	Current and Emerging Time-Integration Strategies in Global Numerical Weather and Climate Prediction. Archives of Computational Methods in Engineering, 2019, 26, 663-684.	10.2	39
9	Global mass fixer algorithms for conservative tracer transport in the ECMWF model. Geoscientific Model Development, 2014, 7, 965-979.	3.6	37
10	Atlas : A library for numerical weather prediction and climate modelling. Computer Physics Communications, 2017, 220, 188-204.	7.5	29
11	A monotonicallyâ€damping secondâ€orderâ€accurate unconditionallyâ€stable numerical scheme for diffusion. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1559-1573.	2.7	26
12	The ESCAPE project: Energy-efficient Scalable Algorithms for Weather Prediction at Exascale. Geoscientific Model Development, 2019, 12, 4425-4441.	3.6	19
13	DESIRE: diagonally extended singly implicit Runge–Kutta effective order methods. Numerical Algorithms, 1998, 17, 121-145.	1.9	18
14	The extreme forecast index at the seasonal scale. Atmospheric Science Letters, 2013, 14, 256-262.	1.9	18
15	Sensitivity of the ECMWF Model to Semi-Lagrangian Departure Point Iterations. Monthly Weather Review, 2016, 144, 3233-3250.	1.4	14
16	More accuracy with less precision. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 4358-4370.	2.7	13
17	An iterative time-stepping scheme for the Met Office's semi-implicit semi-Lagrangian non-hydrostatic model. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 997-1011.	2.7	10
18	An improved implicit predictor–corrector scheme for boundary layer vertical diffusion. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 959-978.	2.7	7

#	Article	IF	CITATIONS
19	Global nature run data with realistic high-resolution carbon weather for the year of the Paris Agreement. Scientific Data, 2022, 9, 160.	5.3	3
20	A fast converging and concise algorithm for computing theÂdeparture points in semi‣agrangian weather and climate models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 670-684.	2.7	2