Gorkem Gunbas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8272418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochromic conjugated polyheterocycles and derivatives—highlights from the last decade towards realization of long lived aspirations. Chemical Communications, 2012, 48, 1083-1101.	2.2	239
2	Could Green be Greener? Novel Donor–Acceptor‶ype Electrochromic Polymers: Towards Excellent Neutral Green Materials with Exceptional Transmissive Oxidized States for Completion of RGB Color Space. Advanced Materials, 2008, 20, 691-695.	11.1	189
3	Donorâ^'Acceptor Polymer with Benzotriazole Moiety: Enhancing the Electrochromic Properties of the "Donor Unit― Chemistry of Materials, 2008, 20, 7510-7513.	3.2	143
4	A Unique Processable Green Polymer with a Transmissive Oxidized State for Realization of Potential RGBâ€Based Electrochromic Device Applications. Advanced Functional Materials, 2008, 18, 2026-2030.	7.8	120
5	A Novel Acetylcholinesterase Biosensor: Core–Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides. ACS Applied Materials & Interfaces, 2016, 8, 8058-8067.	4.0	120
6	New, Highly Stable Electrochromic Polymers from 3,4-Ethylenedioxythiopheneâ^'Bis-Substituted Quinoxalines toward Green Polymeric Materials. Chemistry of Materials, 2007, 19, 6247-6251.	3.2	119
7	One polymer for all: benzotriazole containing donor–acceptor type polymer as a multi-purpose material. Chemical Communications, 2009, , 6768.	2.2	111
8	Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7645-7649.	3.3	101
9	Synergistic Effects in Bimetallic Palladium–Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions. Journal of the American Chemical Society, 2016, 138, 6805-6812.	6.6	94
10	Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels. Nature Protocols, 2015, 10, 528-537.	5.5	77
11	Highly Conjugated Thiophene Derivatives as New Visible Light Sensitive Photoinitiators for Cationic Polymerization. Macromolecules, 2010, 43, 101-106.	2.2	75
12	A quinoxaline derivative as a long wavelength photosensitizer for diaryliodonium salts. Journal of Polymer Science Part A, 2010, 48, 209-213.	2.5	56
13	Chemocatalytic Upgrading of Tailored Fermentation Products Toward Biodiesel. ChemSusChem, 2014, 7, 2445-2448.	3.6	54
14	A new p- and n-dopable selenophene derivative and its electrochromic properties. Organic Electronics, 2009, 10, 34-41.	1.4	49
15	Extreme oxatriquinanes and a record C–O bond length. Nature Chemistry, 2012, 4, 1018-1023.	6.6	48
16	Synthesis, characterization and electrochromic properties of a near infrared active conducting polymer of 1,4-di(selenophen-2-yl)-benzene. Polymer, 2008, 49, 2029-2032.	1.8	41
17	The R ₃ O ⁺ ···H ⁺ Hydrogen Bond: Toward a Tetracoordinate Oxadionium(2+) Ion. Journal of the American Chemical Society, 2012, 134, 707-714.	6.6	39
18	Silver Nanowire/Conducting Polymer Nanocomposite Electrochromic Supercapacitor Electrodes. Journal of the Electrochemical Society, 2017, 164, A721-A727.	1.3	39

GORKEM GUNBAS

#	Article	IF	CITATIONS
19	Both p- and n-type dopable polymer toward electrochromic applications. Organic Electronics, 2008, 9, 501-506.	1.4	35
20	Mitochondriaâ€Targeting Selenopheneâ€Modified BODIPYâ€Based Photosensitizers for the Treatment of Hypoxic Cancer Cells. ChemMedChem, 2019, 14, 1879-1886.	1.6	35
21	A new donorâ€acceptor type polymeric material from a thiophene derivative and its electrochromic properties. Journal of Polymer Science Part A, 2008, 46, 3723-3731.	2.5	34
22	ABE Condensation over Monometallic Catalysts: Catalyst Characterization and Kinetics. ChemCatChem, 2017, 9, 677-684.	1.8	33
23	Upgrading Lignocellulosic Products to Drop″n Biofuels via Dehydrogenative Cross oupling and Hydrodeoxygenation Sequence. ChemSusChem, 2015, 8, 2609-2614.	3.6	31
24	Photovoltaic and photophysical properties of a novel bis-3-hexylthiophene substituted quinoxaline derivative. Solar Energy Materials and Solar Cells, 2008, 92, 1162-1169.	3.0	30
25	A Nonionic Alcohol Soluble Polymer Cathode Interlayer Enables Efficient Organic and Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 8602-8611.	3.2	28
26	A Novel Blue to Transparent Polymer for Electrochromic Supercapacitor Electrodes. Electroanalysis, 2018, 30, 266-273.	1.5	26
27	A new highâ€performance blue to transmissive electrochromic material and use of silver nanowire network electrodes as substrates. Journal of Polymer Science Part A, 2017, 55, 1680-1686.	2.5	24
28	Processable and multichromic polymer of bis-3-hexylthiophene substituted 4-tert-butylphenyl quinoxaline. Organic Electronics, 2008, 9, 296-302.	1.4	22
29	A new NIR absorbing DPP-based polymer for thick organic solar cells. Journal of Materials Chemistry C, 2018, 6, 2957-2961.	2.7	22
30	Hybrid Vapor-Solution Sequentially Deposited Mixed-Halide Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 8257-8265.	2.5	21
31	Electrochromic properties of a copolymer of 1â€4â€di[2,5â€di(2â€thienyl)â€1Hâ€1â€pyrrolyl]benzene with EDC Journal of Applied Polymer Science, 2009, 112, 1082-1087.	Т.3	19
32	A novel red to transmissive electrochromic polymer based on phenanthrocarbazole. RSC Advances, 2016, 6, 25620-25623.	1.7	19
33	Green as it Gets; Donorâ€Acceptor type Polymers as the Key to Realization of RGB Based Polymer Display Devices. Macromolecular Symposia, 2010, 297, 79-86.	0.4	16
34	Resorufin Enters the Photodynamic Therapy Arena: A Monoamine Oxidase Activatable Agent for Selective Cytotoxicity. ACS Medicinal Chemistry Letters, 2020, 11, 2491-2496.	1.3	16
35	A Thienothiopheneâ€Based Cation Treatment Allows Semitransparent Perovskite Solar Cells with Improved Efficiency and Stability. Advanced Functional Materials, 2021, 31, 2103130.	7.8	15
36	Synthesis of N-substituted Pyrido[4,3- <i>d</i>)pyrimidines for the Large-Scale Production of Self-Assembled Rosettes and Nanotubes. Journal of Organic Chemistry, 2013, 78, 11421-11426.	1.7	14

GORKEM GUNBAS

#	Article	IF	CITATIONS
37	Extreme Oxatriquinanes: Structural Characterization of α-Oxyoxonium Species with Extraordinarily Long Carbon–Oxygen Bonds. Journal of the American Chemical Society, 2013, 135, 8173-8176.	6.6	13
38	New conjugated materials containing cyano substituents for light-emitting diodes. Synthetic Metals, 2006, 156, 282-286.	2.1	11
39	A green neutral state donor–acceptor copolymer for organic solar cells. Polymer Chemistry, 2010, 1, 1245.	1.9	10
40	A low-band gap conductive copolymer of bis-3-hexylthiophene substituted 4-tert-butylphenyl quinoxaline and 3,4-ethylenedioxythiophene. Journal of Solid State Electrochemistry, 2010, 14, 279-283.	1.2	8
41	ProTOT: Synthesis of the missing member of the 3,4-chalcogen substituted bridged thiophenes and its utilization in donor-acceptor polymers. Polymer, 2021, 212, 123076.	1.8	7
42	Extraordinary Modes of Bonding Enabled by the Triquinane Framework. Journal of Organic Chemistry, 2013, 78, 9579-9583.	1.7	5
43	Synthesis of N-Bridged Pyrido[4,3-d]pyrimidines and Self-Assembly into Twin Rosette Cages and Nanotubes in Organic Media. Scientific Reports, 2018, 8, 15949.	1.6	5
44	Activity-Based Photosensitizers with Optimized Triplet State Characteristics Toward Cancer Cell Selective and Image Guided Photodynamic Therapy. ACS Applied Bio Materials, 2022, 5, 2754-2767.	2.3	5
45	Balanced Intersystem Crossing in Iodinated Silicon-Fluoresceins Allows New Class of Red Shifted Theranostic Agents. ACS Medicinal Chemistry Letters, 2021, 12, 752-757.	1.3	3
46	A Thienothiopheneâ€Based Cation Treatment Allows Semitransparent Perovskite Solar Cells with Improved Efficiency and Stability (Adv. Funct. Mater. 42/2021). Advanced Functional Materials, 2021, 31, 2170314.	7.8	0