Prashant K Baviskar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8272243/publications.pdf

Version: 2024-02-01

27 465 12 papers citations h-index

28 28 28 498
all docs docs citations times ranked citing authors

21

g-index

#	Article	IF	Citations
1	Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye sensitized solar cell application. Journal of Alloys and Compounds, 2012, 510, 33-37.	2.8	57
2	Effect of Nickel–Zinc Co-doped TiO2 blocking layer on performance of DSSCs. Journal of Alloys and Compounds, 2020, 817, 152810.	2.8	46
3	Light-induced electrochemical performance of 3D- CdS nanonetwork: Effect of annealing. Electrochimica Acta, 2016, 222, 100-107.	2.6	33
4	Straightening of chemically deposited CdS nanowires through annealing towards improved PV device performance. Ceramics International, 2016, 42, 6682-6691.	2.3	31
5	LPG sensor based on complete inorganic n-Bi ₂ S ₃ -p-CuSCN heterojunction synthesized by a simple chemical route. Journal Physics D: Applied Physics, 2010, 43, 245302.	1.3	28
6	SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: Electrolyte effect. Journal of Colloid and Interface Science, 2018, 524, 148-155.	5.0	28
7	Wet chemical synthesis of ZnO thin films and sensitization to light with N3 dye for solar cell application. Journal Physics D: Applied Physics, 2009, 42, 125108.	1.3	25
8	CdS sensitized pristine and Cd doped ZnO solar cells: Effect of SILAR cycles on optical properties and efficiency. Materials Science in Semiconductor Processing, 2018, 80, 179-183.	1.9	22
9	Room temperature chemical synthesis of highly oriented PbSe nanotubes based on negative free energy of formation. Journal of Alloys and Compounds, 2011, 509, 10066-10069.	2.8	21
10	Synthesis and characterization of polypyrrole and its application for solar cell. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	21
11	Bilayered ZnO/Nb ₂ O ₅ photoanode for dye sensitized solar cell. International Journal of Modern Physics B, 2018, 32, 1840046.	1.0	19
12	Layer-by-layer deposition of TiO2–ZrO2 electrode sensitized with Pandan leaves: natural dye-sensitized solar cell. Materials for Renewable and Sustainable Energy, 2019, 8, 1.	1.5	19
13	Role of polyaniline thickness in polymer-zinc oxide based solid state solar cell. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 244, 23-28.	1.7	13
14	Aligned 2D CuSCN nanosheets: a high performance field emitter. RSC Advances, 2016, 6, 71958-71962.	1.7	12
15	ZnO/CuSCN Nano-Heterostructure as a Highly Efficient Field Emitter: a Combined Experimental and Theoretical Investigation. ACS Omega, 2020, 5, 6715-6724.	1.6	12
16	Lead sulphide sensitized ZrO2 photoanode for solar cell application with MoO3 as a counter electrode. Chemical Physics Letters, 2017, 689, 15-18.	1.2	10
17	Fabrication of titanium dioxide (TiO2) and mercury sulfide (HgS) heterojunction for photoelectrochemical study. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	10
18	Sensitization of TiO2 by chemically deposited Cu2S for solar cell: Effect of deposition time on photoelectrochemical performance. Optik, 2020, 207, 163890.	1.4	9

#	Article	IF	Citations
19	Effect of deposition time on photoelectrochemical performance of chemically grown Bi2Se3-sensitized TiO2 nanostructure solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 17440-17450.	1.1	9
20	Physical properties of poly[(thiophene-2,5-diyl)-co-para-chloro benzylidene] doped with cobalt sulphate: synthesis and characterization. Polymer Bulletin, 2018, 75, 255-265.	1.7	7
21	Facile synthesis of D–π–A structured dyes and their applications towards the cost effective fabrication of solar cells as well as sensing of hazardous Hg(<scp>ii</scp>). RSC Advances, 2016, 6, 106453-106464.	1.7	6
22	Effect of ZrO2 barrier layers on the photovoltaic parameters of rose bengalÂdye-sensitized TiO2 solar cell. Journal of Materials Science: Materials in Electronics, 2019, 30, 6015-6022.	1.1	6
23	Simple chemical route synthesized TiO2/Ag2S heterostructure towards efficient semiconductor sensitized solar cells. Optical Materials, 2022, 125, 112073.	1.7	6
24	Synthesis of D–D–A-type small organic molecules with an enlarged linker system towards organic solar cells and the effect of co-adsorbents on cell performance. New Journal of Chemistry, 2016, 40, 634-640.	1.4	5
25	Enhanced field emission properties from surface-modified 2D Cd(OH)2 nanocoins. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	5
26	Dye-sensitized solar cells. , 2021, , 179-211.		3
27	The first report on SILAR deposited nanostructured uranyl sulphide thin films and their chemical conversion to silver sulphide. New Journal of Chemistry, 2015, 39, 8695-8702.	1.4	2