José C FernÃ;ndez-Checa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8272157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sphingosine 1-Phosphate Receptor 4 Promotes Nonalcoholic Steatohepatitis by Activating NLRP3 Inflammasome. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 925-947.	2.3	22
2	Hypothalamic pregnenolone mediates recognition memory in the context of metabolic disorders. Cell Metabolism, 2022, 34, 269-284.e9.	7.2	13
3	Exploration of Digestive Diseases, where discovery and communication meet. , 2022, 1, 1-3.		Ο
4	GDF11 restricts aberrant lipogenesis and changes in mitochondrial structure and function in human hepatocellular carcinoma cells. Journal of Cellular Physiology, 2021, 236, 4076-4090.	2.0	11
5	MITOCHONDRIAL CHOLESTEROL AND CANCER. Seminars in Cancer Biology, 2021, 73, 76-85.	4.3	24
6	STARD1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway. Journal of Hepatology, 2021, 74, 1429-1441.	1.8	34
7	Acid ceramidase improves mitochondrial function and oxidative stress in Niemann-Pick type C disease by repressing STARD1 expression and mitochondrial cholesterol accumulation. Redox Biology, 2021, 45, 102052.	3.9	20
8	Advanced preclinical models for evaluation of drug-induced liver injury – consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. Journal of Hepatology, 2021, 75, 935-959.	1.8	66
9	The loss of DHX15 impairs endothelial energy metabolism, lymphatic drainage and tumor metastasis in mice. Communications Biology, 2021, 4, 1192.	2.0	5
10	CRPC-Reactive Protein, a Promising Approach for Acetaminophen Hepatotoxicity. Cellular and Molecular Gastroenterology and Hepatology, 2021, , .	2.3	1
11	Cholesterol Induces Nrf-2- and HIF-1 <i>α</i> -Dependent Hepatocyte Proliferation and Liver Regeneration to Ameliorate Bile Acid Toxicity in Mouse Models of NASH and Fibrosis. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-18.	1.9	22
12	Endoplasmic Reticulum Stress-Induced Upregulation of STARD1 Promotes Acetaminophen-Induced Acute Liver Failure. Gastroenterology, 2019, 157, 552-568.	0.6	85
13	Cholesterol enrichment in liver mitochondria impairs oxidative phosphorylation and disrupts the assembly of respiratory supercomplexes. Redox Biology, 2019, 24, 101214.	3.9	80
14	Consumption of decaffeinated coffee protects against the development of early non-alcoholic steatohepatitis: Role of intestinal barrier function. Redox Biology, 2019, 21, 101092.	3.9	23
15	The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox Biology, 2018, 14, 164-177.	3.9	59
16	Mitochondrial GSH replenishment as a potential therapeutic approach for Niemann Pick type C disease. Redox Biology, 2017, 11, 60-72.	3.9	55
17	MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content. Redox Biology, 2017, 12, 274-284.	3.9	56
18	Liver Cholesterol Overload Aggravates Obstructive Cholestasis by Inducing Oxidative Stress and Premature Death in Mice. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	1.9	26

José C FernÃindez-Checa

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
20	Angiogenin Secretion From Hepatoma Cells Activates Hepatic Stellate Cells To Amplify A Self-Sustained Cycle Promoting Liver Cancer. Scientific Reports, 2015, 5, 7916.	1.6	42
21	Augmenter of Liver Regeneration Links Mitochondrial Function to Steatohepatitis and Hepatocellular Carcinoma. Gastroenterology, 2015, 148, 285-288.	0.6	6
22	Acid sphingomyelinase-ceramide system in steatohepatitis: A novel target regulating multiple pathways. Journal of Hepatology, 2015, 62, 219-233.	1.8	66
23	Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. Journal of Hepatology, 2015, 63, 670-678.	1.8	104
24	Glutathione and mitochondria. Frontiers in Pharmacology, 2014, 5, 151.	1.6	401
25	Endoplasmic Reticulum Stress Mediates Amyloid β Neurotoxicity via Mitochondrial Cholesterol Trafficking. American Journal of Pathology, 2014, 184, 2066-2081.	1.9	85
26	ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis. Journal of Hepatology, 2014, 61, 1126-1134.	1.8	89
27	JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death and Disease, 2014, 5, e989-e989.	2.7	134
28	Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. Journal of Hepatology, 2009, 50, 789-796.	1.8	296
29	Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metabolism, 2006, 4, 185-198.	7.2	537
30	Ceramide, Tumor Necrosis Factor and Alcohol-Induced Liver Disease. Alcoholism: Clinical and Experimental Research, 2005, 29, 158S-161S.	1.4	18
31	Ceramide, tumor necrosis factor and alcohol-induced liver disease. Alcoholism: Clinical and Experimental Research, 2005, 29, 151S-157S.	1.4	14
32	Identification and Functional Analysis of Mutations in FAD-Binding Domain of Mitochondrial Glycerophosphate Dehydrogenase in Caucasian Patients with Type 2 Diabetes Mellitus. Endocrine, 2001, 16, 39-42.	2.2	8
33	Mitochondrial glutathione depletion in alcoholic liver disease. Alcohol, 1993, 10, 469-475.	0.8	142
34	Expression of rat liver reduced glutathione transport in Xenopus laevis oocytes. Journal of Biological Chemistry, 1993, 268, 2324-8.	1.6	26
35	Selective induction by phenobarbital of the electrogenic transport of glutathione and organic anions in rat liver canalicular membrane vesicles. Journal of Biological Chemistry, 1993, 268, 10836-41.	1.6	33
36	Hepatic mitochondrial glutathione depletion and progression of experimental alcoholic liver disease in rats. Hepatology, 1992, 16, 1423-1427.	3.6	220

#	Article	IF	CITATIONS
37	Canalicular transport of reduced glutathione in normal and mutant Eisai hyperbilirubinemic rats. Journal of Biological Chemistry, 1992, 267, 1667-73.	1.6	119
38	Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress Journal of Clinical Investigation, 1991, 87, 397-405.	3.9	227