
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8271828/publications.pdf Version: 2024-02-01

LIDS F CDERED

#	Article	IF	CITATIONS
1	Chemical Evolution of Rhinovirus Identifies Capsid-Destabilizing Mutations Driving Low-pH-Independent Genome Uncoating. Journal of Virology, 2022, 96, JVI0106021.	1.5	12
2	Identification of broad anti-coronavirus chemical agents for repurposing against SARS-CoV-2 and variants of concern. Current Research in Virological Science, 2022, 3, 100019.	1.8	20
3	Adenovirus entry: Stability, uncoating, and nuclear import. Molecular Microbiology, 2022, 118, 309-320.	1.2	11
4	Sequence-Specific Features of Short Double-Strand, Blunt-End RNAs Have RIG-I- and Type 1 Interferon-Dependent or -Independent Anti-Viral Effects. Viruses, 2022, 14, 1407.	1.5	1
5	Cell-to-cell and genome-to-genome variability of adenovirus transcription tuned by the cell cycle. Journal of Cell Science, 2021, 134, .	1.2	14
6	The endoplasmic reticulum unfolded protein response – homeostasis, cell death and evolution in virus infections. FEMS Microbiology Reviews, 2021, 45, .	3.9	38
7	iMATCH: an integrated modular assembly system for therapeutic combination high-capacity adenovirus gene therapy. Molecular Therapy - Methods and Clinical Development, 2021, 20, 572-586.	1.8	21
8	The HSV-1 Transcription Factor ICP4 Confers Liquid-Like Properties to Viral Replication Compartments. International Journal of Molecular Sciences, 2021, 22, 4447.	1.8	31
9	Adenovirus – a blueprint for gene delivery. Current Opinion in Virology, 2021, 48, 49-56.	2.6	25
10	Microscopy deep learning predicts virus infections and reveals mechanics of lytic-infected cells. IScience, 2021, 24, 102543.	1.9	14
11	On-chip transporting arresting and characterizing individual nano-objects in biological ionic liquids. Science Advances, 2021, 7, .	4.7	2
12	Virus Infection Variability by Single-Cell Profiling. Viruses, 2021, 13, 1568.	1.5	26
13	Two years into COVIDâ€19 – Lessons in SARS oVâ€2 and a perspective from papers in FEBS Letters. FEBS Letters, 2021, 595, 2847.	1.3	5
14	The RGD-binding integrins αvβ6 and αvβ8 are receptors for mouse adenovirus-1 and -3 infection. PLoS Pathogens, 2021, 17, e1010083.	2.1	8
15	A viral ubiquitination switch attenuates innate immunity and triggers nuclear import of virion DNA and infection. Science Advances, 2021, 7, eabl7150.	4.7	10
16	Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science, 2020, 370, 861-865.	6.0	1,015
17	Double-stranded RNA bending by AU-tract sequences. Nucleic Acids Research, 2020, 48, 12917-12928.	6.5	12
18	A high-content image-based drug screen of clinical compounds against cell transmission of adenovirus. Scientific Data, 2020, 7, 265.	2.4	11

#	Article	IF	CITATIONS
19	The Adenovirus Death Protein – a small membrane protein controls cell lysis and disease. FEBS Letters, 2020, 594, 1861-1878.	1.3	24
20	Dynamic competition for hexon binding between core protein VII and lytic protein VI promotes adenovirus maturation and entry. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13699-13707.	3.3	26
21	Adenoviruses $\hat{a} \in $ Infection, pathogenesis and therapy. FEBS Letters, 2020, 594, 1818-1827.	1.3	28
22	Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease. Nature Communications, 2020, 11, 1338.	5.8	32
23	The FDA-Approved Drug Nelfinavir Inhibits Lytic Cell-Free but Not Cell-Associated Nonlytic Transmission of Human Adenovirus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	16
24	The UPR sensor IRE1 $\hat{l}\pm$ and the adenovirus E3-19K glycoprotein sustain persistent and lytic infections. Nature Communications, 2020, 11, 1997.	5.8	32
25	Adenovirus Entry: From Infection to Immunity. Annual Review of Virology, 2019, 6, 177-197.	3.0	113
26	Editorial: Physical Virology and the Nature of Virus Infections. Advances in Experimental Medicine and Biology, 2019, 1215, 1-11.	0.8	5
27	The E3ÂUbiquitin Ligase Mind Bomb 1 Controls Adenovirus Genome Release at the Nuclear Pore Complex. Cell Reports, 2019, 29, 3785-3795.e8.	2.9	37
28	Rhinovirus 3C protease suppresses apoptosis and triggers caspase-independent cell death. Cell Death and Disease, 2018, 9, 272.	2.7	39
29	Adenoviral vector with shield and adapter increases tumor specificity and escapes liver and immune control. Nature Communications, 2018, 9, 450.	5.8	65
30	Growth-restricting effects of siRNA transfections: a largely deterministic combination of off-target binding and hybridization-independent competition. Nucleic Acids Research, 2018, 46, 9309-9320.	6.5	7
31	Label-Free Digital Holo-tomographic Microscopy Reveals Virus-Induced Cytopathic Effects in Live Cells. MSphere, 2018, 3, .	1.3	15
32	A Single Point Mutation in the Rhinovirus 2B Protein Reduces the Requirement for Phosphatidylinositol 4-Kinase Class III Beta in Viral Replication. Journal of Virology, 2018, 92, .	1.5	16
33	How Computational Models Enable Mechanistic Insights into Virus Infection. Methods in Molecular Biology, 2018, 1836, 609-631.	0.4	7
34	Single entity resolution valving of nanoscopic species in liquids. Nature Nanotechnology, 2018, 13, 578-582.	15.6	15
35	MxB is an interferon-induced restriction factor of human herpesviruses. Nature Communications, 2018, 9, 1980.	5.8	102
36	Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton. Viruses, 2018, 10, 166.	1.5	87

#	Article	IF	CITATIONS
37	Concepts in Light Microscopy of Viruses. Viruses, 2018, 10, 202.	1.5	44
38	Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor. PLoS Pathogens, 2018, 14, e1006914.	2.1	56
39	Editorial: An expanded view of viruses. FEMS Microbiology Reviews, 2017, 41, 1-4.	3.9	10
40	Viral mechanisms for docking and delivering at nuclear pore complexes. Seminars in Cell and Developmental Biology, 2017, 68, 59-71.	2.3	33
41	Cell Cycle-Dependent Kinase Cdk9 Is a Postexposure Drug Target against Human Adenoviruses. ACS Infectious Diseases, 2017, 3, 398-405.	1.8	13
42	Cell Cycle-Dependent Expression of Adeno-Associated Virus 2 (AAV2) Rep in Coinfections with Herpes Simplex Virus 1 (HSV-1) Gives Rise to a Mosaic of Cells Replicating either AAV2 or HSV-1. Journal of Virology, 2017, 91, .	1.5	10
43	The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport. Journal of Cell Science, 2017, 130, 2185-2195.	1.2	34
44	Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages. MBio, 2017, 8, .	1.8	55
45	Inhibition of Poxvirus Gene Expression and Genome Replication by Bisbenzimide Derivatives. Journal of Virology, 2017, 91, .	1.5	30
46	The adenovirus major core protein VII is dispensable for virion assembly but is essential for lytic infection. PLoS Pathogens, 2017, 13, e1006455.	2.1	51
47	Small-size recombinant adenoviral hexon protein fragments for the production of virus-type specific antibodies. Virology Journal, 2017, 14, 158.	1.4	8
48	Biology of Adenovirus Cell Entry. , 2016, , 27-58.		11
49	Principles of Virus Uncoating: Cues and the Snooker Ball. Traffic, 2016, 17, 569-592.	1.3	105
50	Infectio: a Generic Framework for Computational Simulation of Virus Transmission between Cells. MSphere, 2016, 1, .	1.3	9
51	Virus and Host Mechanics Support Membrane Penetration and Cell Entry. Journal of Virology, 2016, 90, 3802-3805.	1.5	93
52	A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. ELife, 2016, 5, e13841.	2.8	53
53	Misdelivery at the Nuclear Pore Complex—Stopping a Virus Dead in Its Tracks. Cells, 2015, 4, 277-296.	1.8	38
54	Co-option of Membrane Wounding Enables Virus Penetration into Cells. Cell Host and Microbe, 2015, 18, 75-85.	5.1	114

#	Article	IF	CITATIONS
55	NEMix: Single-cell Nested Effects Models for Probabilistic Pathway Stimulation. PLoS Computational Biology, 2015, 11, e1004078.	1.5	17
56	Fluorescence Tracking of Genome Release during Mechanical Unpacking of Single Viruses. ACS Nano, 2015, 9, 10571-10579.	7.3	67
57	Proper migration and axon outgrowth of zebrafish cranial motoneuron subpopulations require the cell adhesion molecule MDGA2A. Biology Open, 2015, 4, 146-154.	0.6	10
58	Plaque2.0—A High-Throughput Analysis Framework to Score Virus-Cell Transmission and Clonal Cell Expansion. PLoS ONE, 2015, 10, e0138760.	1.1	44
59	Simultaneous analysis of large-scale RNAi screens for pathogen entry. BMC Genomics, 2014, 15, 1162.	1.2	38
60	Innate Immunity to Adenovirus. Human Gene Therapy, 2014, 25, 265-284.	1.4	185
61	Rhinovirus Uses a Phosphatidylinositol 4-Phosphate/Cholesterol Counter-Current for the Formation of Replication Compartments at the ER-Golgi Interface. Cell Host and Microbe, 2014, 16, 677-690.	5.1	189
62	Chemical Induction of Unfolded Protein Response Enhances Cancer Cell Killing through Lytic Virus Infection. Journal of Virology, 2014, 88, 13086-13098.	1.5	29
63	How Cells Tune Viral Mechanics—Insights from Biophysical Measurements of Influenza Virus. Biophysical Journal, 2014, 106, 2317-2321.	0.2	25
64	Virus interactions with endocytic pathways in macrophages and dendritic cells. Trends in Microbiology, 2013, 21, 380-388.	3.5	88
65	Tracking Viral Genomes in Host Cells at Single-Molecule Resolution. Cell Host and Microbe, 2013, 14, 468-480.	5.1	141
66	A Direct and Versatile Assay Measuring Membrane Penetration of Adenovirus in Single Cells. Journal of Virology, 2013, 87, 12367-12379.	1.5	62
67	Adenovirus signalling in entry. Cellular Microbiology, 2013, 15, 53-62.	1.1	78
68	Investigating Endocytic Pathways to the Endoplasmic Reticulum and to the Cytosol Using <scp>SNAP</scp> â€Trap. Traffic, 2013, 14, 36-46.	1.3	19
69	Uncoating of non-enveloped viruses. Current Opinion in Virology, 2013, 3, 27-33.	2.6	105
70	Regulation of a Viral Proteinase by a Peptide and DNA in One-dimensional Space. Journal of Biological Chemistry, 2013, 288, 2059-2067.	1.6	15
71	iTRAQ-Based and Label-Free Proteomics Approaches for Studies of Human Adenovirus Infections. International Journal of Proteomics, 2013, 2013, 1-16.	2.0	73
72	Niclosamide Is a Proton Carrier and Targets Acidic Endosomes with Broad Antiviral Effects. PLoS Pathogens, 2012, 8, e1002976.	2.1	200

#	Article	IF	CITATIONS
73	Singleâ€cell analysis of population context advances RNAi screening at multiple levels. Molecular Systems Biology, 2012, 8, 579.	3.2	153
74	Avidity Binding of Human Adenovirus Serotypes 3 and 7 to the Membrane Cofactor CD46 Triggers Infection. Journal of Virology, 2012, 86, 1623-1637.	1.5	70
75	Cell-Free Transmission of Human Adenovirus by Passive Mass Transfer in Cell Culture Simulated in a Computer Model. Journal of Virology, 2012, 86, 10123-10137.	1.5	60
76	Too smart to fail—how viruses exploit the complexity of host cells during entry. Current Opinion in Virology, 2011, 1, 3-5.	2.6	4
77	Chemotactic antiviral cytokines promote infectious apical entry of human adenovirus into polarized epithelial cells. Nature Communications, 2011, 2, 391.	5.8	87
78	Drifting Motions of the Adenovirus Receptor CAR and Immobile Integrins Initiate Virus Uncoating and Membrane Lytic Protein Exposure. Cell Host and Microbe, 2011, 10, 105-117.	5.1	157
79	Kinesin-1-Mediated Capsid Disassembly and Disruption of the Nuclear Pore Complex Promote Virus Infection. Cell Host and Microbe, 2011, 10, 210-223.	5.1	174
80	Genomic and phylogenetic analyses of murine adenovirus 2. Virus Research, 2011, 160, 128-135.	1,1	21
81	Adenovirus-triggered innate signalling pathways. European Journal of Microbiology and Immunology, 2011, 1, 279-288.	1.5	31
82	Using the Whole-Genome Sequence To Characterize and Name Human Adenoviruses. Journal of Virology, 2011, 85, 5701-5702.	1.5	163
83	Stepwise Loss of Fluorescent Core Protein V from Human Adenovirus during Entry into Cells. Journal of Virology, 2011, 85, 481-496.	1.5	76
84	The Dynactin Complex Enhances the Speed of Microtubule-Dependent Motions of Adenovirus Both Towards and Away from the Nucleus. Viruses, 2011, 3, 233-253.	1.5	44
85	Analysis of adenovirus trans-complementation-mediated gene expression controlled by melanoma-specific TETP promoter in vitro. Virology Journal, 2010, 7, 175.	1.4	6
86	An RNA replication-center assay for high content image-based quantifications of human rhinovirus and coxsackievirus infections. Virology Journal, 2010, 7, 264.	1.4	33
87	Macropinocytotic Uptake and Infection of Human Epithelial Cells with Species B2 Adenovirus Type 35. Journal of Virology, 2010, 84, 5336-5350.	1.5	103
88	A combined proteomic and genetic analysis identifies a role for the lipid desaturase Desat1 in starvation-induced autophagy in Drosophila. Autophagy, 2009, 5, 980-990.	4.3	59
89	A Stochastic Model for Microtubule Motors Describes the In Vivo Cytoplasmic Transport of Human Adenovirus. PLoS Computational Biology, 2009, 5, e1000623.	1.5	51
90	Virus Movements on the Plasma Membrane Support Infection and Transmission between Cells. PLoS Pathogens, 2009, 5, e1000621.	2.1	128

#	Article	IF	CITATIONS
91	DNA-tumor virus entry—From plasma membrane to the nucleus. Seminars in Cell and Developmental Biology, 2009, 20, 631-642.	2.3	24
92	Genetic reconstitution of the human Adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape. Virology Journal, 2009, 6, 174.	1.4	50
93	Infectious Adenovirus Type 2 Transport Through Early but not Late Endosomes. Traffic, 2008, 9, 2265-2278.	1.3	117
94	Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO Journal, 2008, 27, 956-969.	3.5	172
95	Redox rescues virus from ER trap. Nature Cell Biology, 2008, 10, 9-11.	4.6	10
96	Key Role of Splenic Myeloid DCs in the IFN-αβ Response to Adenoviruses In Vivo. PLoS Pathogens, 2008, 4, e1000208.	2.1	89
97	Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor. Journal of General Virology, 2007, 88, 2925-2934.	1.3	62
98	Junctional Gating: The Achilles' Heel of Epithelial Cells in Pathogen Infection. Cell Host and Microbe, 2007, 2, 143-146.	5.1	21
99	A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells. Journal of Structural Biology, 2007, 159, 347-358.	1.3	92
100	A Superhighway to Virus Infection. Cell, 2006, 124, 741-754.	13.5	351
101	Melanoma cultures show different susceptibility towards E1A-, E1B-19 kDa- and fiber-modified replication-competent adenoviruses. Gene Therapy, 2006, 13, 893-905.	2.3	16
102	The nucleotide sequence and a first generation gene transfer vector of species B human adenovirus serotype 3. Virology, 2005, 343, 283-298.	1.1	47
103	Early Steps of Clathrin-Mediated Endocytosis Involved in Phagosomal Escape of FcÎ ³ Receptor-Targeted Adenovirus. Journal of Virology, 2005, 79, 2604-2613.	1.5	40
104	Nuclear Targeting of Adenovirus Type 2 Requires CRM1-mediated Nuclear Export. Molecular Biology of the Cell, 2005, 16, 2999-3009.	0.9	85
105	Viral trafficking violations in axons: The herpesvirus case. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5639-5640.	3.3	19
106	The Distal Short Consensus Repeats 1 and 2 of the Membrane Cofactor Protein CD46 and Their Distance from the Cell Membrane Determine Productive Entry of Species B Adenovirus Serotype 35. Journal of Virology, 2005, 79, 10013-10022.	1.5	46
107	Cholesterol Is Required for Endocytosis and Endosomal Escape of Adenovirus Type 2. Journal of Virology, 2004, 78, 3089-3098.	1.5	86
108	RESPONSE OF THE ITALIAN AGILE FROG (RANA LATASTEI) TO A RANAVIRUS, FROG VIRUS 3: A MODEL FOR VIRAL EMERGENCE IN NAÃVE POPULATIONS. Journal of Wildlife Diseases, 2004, 40, 660-669.	0.3	68

#	Article	IF	CITATIONS
109	Adenovirus endocytosis. Journal of Gene Medicine, 2004, 6, S152-S163.	1.4	217
110	The Human Membrane Cofactor CD46 Is a Receptor for Species B Adenovirus Serotype 3. Journal of Virology, 2004, 78, 4454-4462.	1.5	247
111	Cell spreading on quartz crystal microbalance elicits positive frequency shifts indicative of viscosity changes. Analytical and Bioanalytical Chemistry, 2003, 377, 578-586.	1.9	73
112	Simultaneous measurement of the maximum oscillation amplitude and the transient decay time constant of the QCM reveals stiffness changes of the adlayer. Analytical and Bioanalytical Chemistry, 2003, 377, 570-577.	1.9	17
113	Flamingo Regulates R8 Axon-Axon and Axon-Target Interactions in the Drosophila Visual System. Current Biology, 2003, 13, 828-832.	1.8	116
114	Adenovirus endocytosis. Journal of Gene Medicine, 2003, 5, 451-462.	1.4	155
115	Non-Classical Export of an Adenovirus Structural Protein. Traffic, 2003, 4, 390-402.	1.3	27
116	Nuclear Import of Viral DNA Genomes. Traffic, 2003, 4, 136-143.	1.3	81
117	A novel attenuated replication-competent adenovirus for melanoma therapy. Gene Therapy, 2003, 10, 530-539.	2.3	26
118	The αvl²5 integrin of hematopoietic and nonhematopoietic cells is a transduction receptor of RGD-4C fiber-modified adenoviruses. Gene Therapy, 2003, 10, 1643-1653.	2.3	52
119	Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10855-10860.	3.3	192
120	Intact Microtubules Support Adenovirus and Herpes Simplex Virus Infections. Journal of Virology, 2002, 76, 9962-9971.	1.5	143
121	Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. Journal of Cell Biology, 2002, 158, 1119-1131.	2.3	425
122	Unhampered Prion Neuroinvasion despite Impaired Fast Axonal Transport in Transgenic Mice Overexpressing Four-Repeat Tau. Journal of Neuroscience, 2002, 22, 7471-7477.	1.7	61
123	Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. EMBO Journal, 2001, 20, 1310-1319.	3.5	210
124	Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nature Cell Biology, 2001, 3, 1092-1100.	4.6	274
125	Nucleo-cytoplasmic Trafficking of Metal-regulatory Transcription Factor 1 Is Regulated by Diverse Stress Signals. Journal of Biological Chemistry, 2001, 276, 25487-25495.	1.6	119
126	Functional and Selective Targeting of Adenovirus to High-Affinity FcÎ ³ Receptor I-Positive Cells by Using a Bispecific Hybrid Adapter. Journal of Virology, 2001, 75, 480-489.	1.5	76

#	Article	IF	CITATIONS
127	Intracellular Virus Trafficking Reveals Physiological Characteristics of the Cytoskeleton. Physiology, 2000, 15, 67-71.	1.6	11
128	The First Step of Adenovirus Type 2 Disassembly Occurs at the Cell Surface, Independently of Endocytosis and Escape to the Cytosol. Journal of Virology, 2000, 74, 7085-7095.	1.5	157
129	Adenovirus Entry into Cells: A Quantitative Fluorescence Microscopy Approach. , 1999, , 217-230.		10
130	Microtubule-dependent Plus- and Minus End–directed Motilities Are Competing Processes for Nuclear Targeting of Adenovirus. Journal of Cell Biology, 1999, 144, 657-672.	2.3	413
131	Virus assembly and disassembly: the adenovirus cysteine protease as a trigger factor. , 1998, 8, 213-222.		70
132	Virus assembly and disassembly: the adenovirus cysteine protease as a trigger factor. , 1998, 8, 213.		5
133	The role of the nuclear pore complex in adenovirus DNA entry. EMBO Journal, 1997, 16, 5998-6007.	3.5	269
134	Nuclear targeting of SV40 and adenovirus. Trends in Cell Biology, 1996, 6, 189-195.	3.6	60
135	Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus Journal of Cell Biology, 1995, 128, 5-14.	2.3	198
136	Mechanisms of virus uncoating. Trends in Microbiology, 1994, 2, 52-56.	3.5	114
137	Stepwise dismantling of adenovirus 2 during entry into cells. Cell, 1993, 75, 477-486.	13.5	807
138	Nuclear protein import is inhibited by an antibody to a lumenal epitope of a nuclear pore complex glycoprotein Journal of Cell Biology, 1992, 116, 15-30.	2.3	100
139	Purification of endo-N-acetyl-β-d-glucosaminidase H by substrate-affinity chromatography. Carbohydrate Research, 1989, 189, 289-299.	1.1	2
140	Effect of the glucosidase inhibitor 1-deoxynojirimycin on protein secretion from Saccharomyces cerevisiae. Enzyme and Microbial Technology, 1988, 10, 246-251.	1.6	4
141	Galactosyltransferase-dependent sialylation of complex and endo-N-acetylglucosaminidase H-treated coreN-glycans in vitro. FEBS Letters, 1986, 203, 64-68.	1.3	20
142	Endosomophagy clears disrupted early endosomes but not virus particles during virus entry into cells . Matters, 0, , .	1.0	11