Jiantao Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8271696/jiantao-li-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38	3,654	25	39
papers	citations	h-index	g-index
39	4,633 ext. citations	13.7	5.43
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
38	Ligand Modulation of Active Sites to Promote Electrocatalytic Oxygen Evolution <i>Advanced Materials</i> , 2022 , e2200270	24	16
37	Oxygen-Plasma-Induced Hetero-Interface NiFe2O4/NiMoO4 Catalyst for Enhanced Electrochemical Oxygen Evolution. <i>Materials</i> , 2022 , 15, 3688	3.5	
36	Coordination engineering of metal single atom on carbon for enhanced and robust potassium storage. <i>Matter</i> , 2021 ,	12.7	14
35	Isolated copper-tin atomic interfaces tuning electrocatalytic CO conversion. <i>Nature Communications</i> , 2021 , 12, 1449	17.4	36
34	Quicker and More Zn Storage Predominantly from the Interface. Advanced Materials, 2021, 33, e210035	5 9 .4	35
33	Understanding the Effect of Solid Electrocatalysts on Achieving Highly Energy-Efficient Lithium Dxygen Batteries. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100045	1.6	0
32	Ni/Fe based bimetallic coordination complexes with rich active sites for efficient oxygen evolution reaction. <i>Chemical Engineering Journal</i> , 2021 , 405, 126959	14.7	18
31	Unexpected discovery of magnesium-vanadium spinel oxide containing extractable Mg2+ as a high-capacity cathode material for magnesium ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 405, 127005	14.7	11
30	Correlating Catalyst Design and Discharged Product to Reduce Overpotential in Li-CO Batteries. <i>Small</i> , 2021 , 17, e2007760	11	8
29	Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. <i>Nano Energy</i> , 2021 , 87, 106153	17.1	19
28	Understanding the Role of Lithium Iodide in Lithium-Oxygen Batteries. Advanced Materials, 2021, e2100	5 1 48	7
27	Cobalt decorated nitrogen-doped carbon bowls as efficient electrocatalysts for the oxygen reduction reaction. <i>Chemical Communications</i> , 2020 , 56, 4488-4491	5.8	21
26	Universal Approach to Fabricating Graphene-Supported Single-Atom Catalysts from Doped ZnO Solid Solutions. <i>ACS Central Science</i> , 2020 , 6, 1431-1440	16.8	42
25	Advances in metal-organic framework coatings: versatile synthesis and broad applications. <i>Chemical Society Reviews</i> , 2020 , 49, 3142-3186	58.5	167
24	Upraising the O 2p Orbital by Integrating Ni with MoO2 for Accelerating Hydrogen Evolution Kinetics. <i>ACS Catalysis</i> , 2019 , 9, 2275-2285	13.1	103
23	Boosting oxygen reduction activity with low-temperature derived high-loading atomic cobalt on nitrogen-doped graphene for efficient Zn-air batteries. <i>Chemical Communications</i> , 2019 , 55, 334-337	5.8	25
22	CopperNickel Nitride Nanosheets as Efficient Bifunctional Catalysts for Hydrazine-Assisted Electrolytic Hydrogen Production. <i>Advanced Energy Materials</i> , 2019 , 9, 1900390	21.8	128

(2017-2019)

21	Vanadium Oxide Pillared by Interlayer Mg2+ Ions and Water as Ultralong-Life Cathodes for Magnesium-Ion Batteries. <i>CheM</i> , 2019 , 5, 1194-1209	16.2	100
20	Low-Crystalline Bimetallic Metal©rganic Framework Electrocatalysts with Rich Active Sites for Oxygen Evolution. <i>ACS Energy Letters</i> , 2019 , 4, 285-292	20.1	150
19	Realizing Three-Electron Redox Reactions in NASICON-Structured Na3MnTi(PO4)3 for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1803436	21.8	89
18	Hierarchical Bimetallic Selenide Nanosheet-Constructed Nanotubes for Efficient Electrocatalytic Water Oxidation. <i>ChemElectroChem</i> , 2019 , 6, 331-335	4.3	11
17	Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. <i>Nano Research</i> , 2019 , 12, 205-210	10	35
16	Oxygen Vacancy-Determined Highly Efficient Oxygen Reduction in NiCoO/Hollow Carbon Spheres. <i>ACS Applied Materials & Discourt Action Spheres</i> , 2018 , 10, 16410-16417	9.5	88
15	Highly Durable NaVOII.63HO Nanowire Cathode for Aqueous Zinc-Ion Battery. <i>Nano Letters</i> , 2018 , 18, 1758-1763	11.5	403
14	High-Performance Na-O Batteries Enabled by Oriented NaO Nanowires as Discharge Products. <i>Nano Letters</i> , 2018 , 18, 3934-3942	11.5	27
13	Ni foam supported NiO nanosheets as high-performance free-standing electrodes for hybrid supercapacitors and Ni🗖n batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19488-19494	13	57
12	Polyoxomolybdate-derived carbon-encapsulated multicomponent electrocatalysts for synergistically boosting hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17874-17881	13	23
11	Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. <i>Nature Communications</i> , 2017 , 8, 14264	17.4	452
10	General Oriented Formation of Carbon Nanotubes from Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8212-8221	16.4	598
9	Mass Production of Monodisperse Carbon Microspheres with Size-Dependent Supercapacitor Performance via Aqueous Self-Catalyzed Polymerization. <i>ChemPlusChem</i> , 2017 , 82, 872-878	2.8	35
8	Facet-Selective Deposition of FeO on \(\text{MoO Nanobelts for Lithium Storage.} \) ACS Applied Materials & amp; Interfaces, 2017 , 9, 39425-39431	9.5	33
7	Zn/VO Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 42717-42722	9.5	293
6	General Oriented Synthesis of Precise Carbon-Confined Nanostructures by Low-Pressure Vapor Superassembly and Controlled Pyrolysis. <i>Nano Letters</i> , 2017 , 17, 7773-7781	11.5	46
5	Metal-organic framework derived carbon-confined NiP nanocrystals supported on graphene for an efficient oxygen evolution reaction. <i>Chemical Communications</i> , 2017 , 53, 8372-8375	5.8	147
4	A Crystalline/Amorphous Cobalt(II,III) Oxide Hybrid Electrocatalyst for LithiumAir Batteries. <i>Energy Technology</i> , 2017 , 5, 568-579	3.5	11

3	Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. <i>Nano Research</i> , 2016 , 9, 2445-2457	10	32
2	All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. <i>Nano Energy</i> , 2016 , 26, 446-455	17.1	147
1	Porous Nickel-Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. <i>ACS Applied Materials & Damp; Interfaces</i> , 2016 , 8, 19386-92	9.5	225