Mireille Rossel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8270414/publications.pdf

Version: 2024-02-01

840776 713466 21 530 11 21 citations h-index g-index papers 21 21 21 875 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Activation of the sigma-1 receptor chaperone alleviates symptoms of Wolfram syndrome in preclinical models. Science Translational Medicine, 2022, 14, eabh3763.	12.4	29
2	Zebrafish Models to Study New Pathways in Tauopathies. International Journal of Molecular Sciences, 2021, 22, 4626.	4.1	6
3	Variants in <i>USP48</i> encoding ubiquitin hydrolase are associated with autosomal dominant non-syndromic hereditary hearing loss. Human Molecular Genetics, 2021, 30, 1785-1796.	2.9	6
4	A rational study of the influence of Mn2+-insertion in Prussian blue nanoparticles on their photothermal properties. Journal of Materials Chemistry B, 2021, 9, 9670-9683.	5.8	6
5	Reg- $1\hat{l}\pm$ Promotes Differentiation of Cortical Progenitors via Its N-Terminal Active Domain. Frontiers in Cell and Developmental Biology, 2020, 8, 681.	3.7	1
6	Improvement of Cell Penetrating Peptide for Efficient siRNA Targeting of Tumor Xenografts in Zebrafish Embryos. Advanced Therapeutics, 2020, 3, 1900204.	3.2	6
7	Neuroprotective brain-derived neurotrophic factor signaling in the TAU-P301L tauopathy zebrafish model. Pharmacological Research, 2020, 158, 104865.	7.1	16
8	Knockdown of the CXCL12/CXCR7 chemokine pathway results in learning deficits and neural progenitor maturation impairment in mice. Brain, Behavior, and Immunity, 2019, 80, 697-710.	4.1	10
9	Sonic Hedgehog repression underlies gigaxonin mutation–induced motor deficits in giant axonal neuropathy. Journal of Clinical Investigation, 2019, 129, 5312-5326.	8.2	18
10	Topographical memory analyzed in mice using the Hamlet test, a novel complex maze. Neurobiology of Learning and Memory, 2018, 149, 118-134.	1.9	12
11	Porous Porphyrinâ€Based Organosilica Nanoparticles for NIR Twoâ€Photon Photodynamic Therapy and Gene Delivery in Zebrafish. Advanced Functional Materials, 2018, 28, 1800235.	14.9	50
12	Regenerating islet-derived $1\hat{l}\pm$ (REG- $1\hat{l}\pm$) protein increases tau phosphorylation in cell and animal models of tauopathies. Neurobiology of Disease, 2018, 119, 136-148.	4.4	11
13	Photodynamic Therapy: Porous Porphyrin-Based Organosilica Nanoparticles for NIR Two-Photon Photodynamic Therapy and Gene Delivery in Zebrafish (Adv. Funct. Mater. 21/2018). Advanced Functional Materials, 2018, 28, 1870143.	14.9	4
14	CXCR7 Receptor Controls the Maintenance of Subpial Positioning of Cajal–Retzius Cells. Cerebral Cortex, 2015, 25, 3446-3457.	2.9	17
15	Recessive Mutations in RTN4IP1 Cause Isolated and Syndromic Optic Neuropathies. American Journal of Human Genetics, 2015, 97, 754-760.	6.2	54
16	Zebrafish Prion Protein PrP2 Controls Collective Migration Process during Lateral Line Sensory System Development. PLoS ONE, 2014, 9, e113331.	2.5	18
17	Calpain 2 is required for sister chromatid cohesion. Chromosoma, 2010, 119, 267-274.	2.2	5
18	CXCR4 and CXCR7 cooperate during tangential migration of facial motoneurons. Molecular and Cellular Neurosciences, 2009, 40, 474-484.	2.2	37

#	Article	IF	CITATIONS
19	Calpain 2 expression pattern and sub-cellular localization during mouse embryogenesis. International Journal of Developmental Biology, 2008, 52, 383-388.	0.6	21
20	Molecular Interaction between Projection Neuron Precursors and Invading Interneurons via Stromal-Derived Factor 1 (CXCL12)/CXCR4 Signaling in the Cortical Subventricular Zone/Intermediate Zone. Journal of Neuroscience, 2006, 26, 13273-13278.	3.6	175
21	Stromal cell-derived factor-1 (SDF-1) expression in embryonic mouse cerebral cortex starts in the intermediate zone close to the pallial–subpallial boundary and extends progressively towards the cortical hem. Gene Expression Patterns, 2005, 5, 317-322.	0.8	28