Jian Ping Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8270085/publications.pdf Version: 2024-02-01

ΙΙΔΝ ΡΙΝΟ ΤΔΝ

#	Article	IF	CITATION
1	Utilization of oil palm fronds as a sustainable carbon source in biorefineries. International Journal of Hydrogen Energy, 2016, 41, 4896-4906.	3.8	84
2	Insight into Biomass as a Renewable Carbon Source for the Production of Succinic Acid and the Factors Affecting the Metabolic Flux toward Higher Succinate Yield. Industrial & Engineering Chemistry Research, 2014, 53, 16123-16134.	1.8	48
3	Biorefinery approach towards greener succinic acid production from oil palm frond bagasse. Process Biochemistry, 2016, 51, 1527-1537.	1.8	44
4	Operation performance of up-flow anaerobic sludge blanket (UASB) bioreactor for biohydrogen production by self-granulated sludge using pre-treated palm oil mill effluent (POME) as carbon source. Renewable Energy, 2019, 134, 1262-1272.	4.3	43
5	Incorporation of CO2 during the production of succinic acid from sustainable oil palm frond juice. Journal of CO2 Utilization, 2018, 26, 595-601.	3.3	32
6	Potential use of coconut shell activated carbon as an immobilisation carrier for high conversion of succinic acid from oil palm frond hydrolysate. RSC Advances, 2017, 7, 49480-49489.	1.7	26
7	Preeminent productivity of 1,3-propanediol by Clostridium butyricum JKT37 and the role of using calcium carbonate as pH neutraliser in glycerol fermentation. Bioresource Technology, 2017, 233, 296-304.	4.8	24
8	Improved Fermentability of Pretreated Glycerol Enhanced Bioconversion of 1,3-Propanediol. Industrial & & & & & & & & & & & & & & & & & & &	1.8	17
9	Multiple crystallization as a potential strategy for efficient recovery of succinic acid following fermentation with immobilized cells. Bioprocess and Biosystems Engineering, 2020, 43, 1153-1169.	1.7	14
10	Enhancement of biohydrogen production from palm oil mill effluent (POME): A review. International Journal of Hydrogen Energy, 2022, 47, 40637-40655.	3.8	13
11	Homogeneous solid dispersion (HSD) system for rapid and stable production of succinic acid from lignocellulosic hydrolysate. Bioprocess and Biosystems Engineering, 2019, 42, 117-130.	1.7	12
12	Effectiveness of fouling mechanism for bacterial immobilization in polyvinylidene fluoride membranes for biohydrogen fermentation. Food and Bioproducts Processing, 2020, 120, 48-57.	1.8	8
13	Sequential detoxification of oil palm fronds hydrolysate with coconut shell activated charcoal and pH controlled in bioreactor for xylitol production. Chemical Engineering Research and Design, 2022, 179, 90-106.	2.7	5
14	An Insight into Enzymatic Immobilization Techniques on the Saccharification of Lignocellulosic Biomass. Industrial & Engineering Chemistry Research, 2022, 61, 10603-10615.	1.8	3
15	THE EFFECTS OF REDUCING POWER FROM METAL CARBONATES ON SUCCINIC ACID PRODUCTION USING ACTINOBACILLUS SUCCINOGENES. Jurnal Teknologi (Sciences and Engineering), 2017, 79, .	0.3	0