
Nadezhda A Shurygina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8269484/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revealing Hydrogen States in Carbon Structures by Analyzing the Thermal Desorption Spectra. Journal of Carbon Research, 2022, 8, 6.	2.7	4
2	On the Problem of "Super―Storage of Hydrogen in Graphite Nanofibers. Journal of Carbon Research, 2022, 8, 23.	2.7	1
3	Effect of Microalloying Elements on the Physicochemical Properties of Commercial-Purity Titanium Subjected to Severe Plastic Deformation. Russian Metallurgy (Metally), 2021, 2021, 410-417.	0.5	1
4	Peculiarities of structure and properties of titanium during fragmentation and reversal in a torsion process under high pressure. IOP Conference Series: Materials Science and Engineering, 2020, 709, 044090.	0.6	2
5	On manifestation & physics of the Kurdjumov and spillover effects in carbon nanostructures, under intercalation of high density hydrogen. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 233-237.	2.1	7
6	On characteristics and physics of processes of thermal desorption of deuterium from isotropic graphite at 700–1700ÂK. Journal of Nuclear Materials, 2020, 535, 152162.	2.7	11
7	On the kinetic analysis of the hydrogen thermal desorption spectra for graphite and advanced carbon nanomaterials. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 147-149.	2.1	3
8	Production methods of amorphous-crystalline materials. Deformatsiya I Razrushenie Materialov, 2020, , 2-15.	0.1	0
9	The effect of megaplastic deformation in the Bridgman chamber on the phase transformations, corrosion behavior, and microhardness of pure VT1-00 and VT1-0 titanium. Vektor Nauki Tol Yattinskogo Gosudarstvennogo Universiteta, 2020, , 77-85.	0.1	0
10	Effect of Megaplastic Deformation in a Bridgman Chamber at Various Temperatures on the Corrosion Resistance of VT1-0 Titanium. Russian Metallurgy (Metally), 2019, 2019, 326-330.	0.5	1
11	Effect of the Fractionality and Direction of Severe Plastic Deformation on the Structure and Properties of Commercial-Purity Titanium. Russian Metallurgy (Metally), 2019, 2019, 1051-1056.	0.5	0
12	Stochastic Computer Model of the Kinetics of Multicomponent Intercrystalline Adsorption in Solid Solutions. Bulletin of the Russian Academy of Sciences: Physics, 2018, 82, 1172-1179.	0.6	0
13	Effect of the Temperature of Megaplastic Deformation in a Bridgman Chamber on the Formation of Structures and the Physicochemical Properties of Titanium (BT1-0). Bulletin of the Russian Academy of Sciences: Physics, 2018, 82, 1113-1124.	0.6	14
14	Influence of the Temperature of Straining in a Bridgman Chamber on Peculiarities of the Defect Structure Formation in Commercial-Grade Titanium. Technical Physics Letters, 2018, 44, 934-937.	0.7	1
15	Influence of severe plastic deformation in Bridgman chamber at different temperatures on corrosion resistance of titanium VT1-0. Deformatsiya I Razrushenie Materialov, 2018, , 15-20.	0.1	0
16	Effect of γ-(Fe,Ni) crystal-size stabilization in Fe–Ni–B amorphous ribbon. Physics of Metals and Metallography, 2017, 118, 176-182.	1.0	6
17	Grain boundary engineering and superstrength of nanocrystals. Technical Physics Letters, 2016, 42, 51-54.	0.7	14
18	Approach to the Theoretical Strength of Ti–Ni–Cu Alloy Nanocrystals by Grain Boundary Design. Journal of Materials Science and Technology, 2015, 31, 91-96.	10.7	4

NADEZHDA A SHURYGINA

#	Article	IF	CITATIONS
19	Physical criterion for the time-temperature stability of the mechanical behavior of amorphous alloys. Russian Metallurgy (Metally), 2015, 2015, 274-277.	0.5	1
20	Constructing the pair interaction potentials of iron atoms with other metals. Inorganic Materials: Applied Research, 2015, 6, 402-406.	0.5	15
21	Pinning of nanocrystals growth at Fe–Ni–B amorphous alloy crystallization: Atom probe investigations. Materials Letters, 2015, 160, 339-342.	2.6	9
22	Interaction of deformation shear bands with nanoparticles in amorphous-nanocrystalline alloys. Russian Metallurgy (Metally), 2013, 2013, 235-244.	0.5	21
23	Self-blocking of shear bands and the delocalization of plastic flows in amorphous alloys upon megaplastic deformation. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 1391-1396.	0.6	13
24	Engineering of grain boundaries as a method for achieving the ultimate (theoretical) strength of nanocrystals. Russian Metallurgy (Metally), 2012, 2012, 853-859.	0.5	0
25	Effect of nanocrystallization on the mechanical and magnetic properties of finemet-type alloy (Fe78.5Si13.5B9Nb3Cu1). Bulletin of the Russian Academy of Sciences: Physics, 2012, 76, 44-50.	0.6	5
26	Application of the principle of engineering of grain boundaries for realization of the ultimate (theoretical) strength of nanocrystals. Doklady Physics, 2012, 57, 4-6.	0.7	0
27	Structural features of crystallization and hardening of amorphous alloy in the Fe-Cr-B system. Inorganic Materials: Applied Research, 2012, 3, 23-27.	0.5	3
28	Effect of nanocrystallization on the mechanical behavior of Fe-Ni-based amorphous alloys. Russian Metallurgy (Metally), 2011, 2011, 947-955.	0.5	9