Kornelius Nielsch

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8268840/kornelius-nielsch-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 18,466 126 403 h-index g-index citations papers 6.6 6.61 20,196 439 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
403	Electrocaloric temperature changes in epitaxial Ba1\subsetensial SrxTiO3 films. <i>Journal of Alloys and Compounds</i> , 2022 , 891, 162041	5.7	1
402	Mobility-enhanced thermoelectric performance in textured nanograin Bi2Se3, effect on scattering and surface-like transport. <i>Materials Today Physics</i> , 2022 , 24, 100669	8	1
401	Study of the Annealing Effects of Sputtered Bi 2 Te 3 Thin Films with Full Thermoelectric Figure of Merit Characterization. <i>Physica Status Solidi - Rapid Research Letters</i> , 2022 , 16, 2100533	2.5	О
400	Core-Shell GaAs-Fe Nanowire Arrays: Fabrication Using Electrochemical Etching and Deposition and Study of Their Magnetic Properties <i>Nanomaterials</i> , 2022 , 12,	5.4	2
399	Geometrical Optimization and Thermal-Stability Characterization of Te-Free Thermoelectric Modules Based on MgAgSb/Mg (Bi,Sb) <i>Small</i> , 2022 , e2201183	11	3
398	Estimating thin-film thermal conductivity by optical pump thermoreflectance imaging and finite element analysis. <i>Journal of Applied Physics</i> , 2022 , 131, 185111	2.5	
397	Dependency of hysteretic loss on speed and tilt in a rotating superconducting magnetic bearing. Superconductor Science and Technology, 2021 , 34, 125004	3.1	
396	Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials (Adv. Energy Mater. 37/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170144	21.8	
395	Advances in magneto-ionic materials and perspectives for their application. APL Materials, 2021, 9, 0309	99 <i>3</i> 7	17
394	Structural and Electric Properties of Epitaxial Na0.5Bi0.5TiO3-Based Thin Films. <i>Coatings</i> , 2021 , 11, 651	2.9	1
393	Magnetoionic control of perpendicular exchange bias. <i>Physical Review Materials</i> , 2021 , 5,	3.2	10
392	Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion. <i>Advanced Energy Materials</i> , 2021 , 11, 2101213	21.8	3
391	Nonreciprocity of spin waves in magnetic nanotubes with helical equilibrium magnetization. <i>Applied Physics Letters</i> , 2021 , 118, 262411	3.4	3
390	High-Pressure-Sintering-Induced Microstructural Engineering for an Ultimate Phonon Scattering of Thermoelectric Half-Heusler Compounds. <i>Small</i> , 2021 , 17, e2102045	11	3
389	Building Hierarchical Martensite. <i>Advanced Functional Materials</i> , 2021 , 31, 2005715	15.6	10
388	Heterostructured Bismuth Telluride Selenide Nanosheets for Enhanced Thermoelectric Performance. <i>Small Science</i> , 2021 , 1, 2000021		11
387	Influence of Nanoparticle Processing on the Thermoelectric Properties of (Bi Sb) Te Ternary Alloys. <i>ChemistryOpen</i> , 2021 , 10, 189-198	2.3	2

(2020-2021)

386	Robust magneto-ionic effect in Fe/FeOx thin films in electrolytes with different cations. <i>IEEE Transactions on Magnetics</i> , 2021 , 1-1	2	1
385	Oxygen-Doped Carbon Nitride Tubes for Highly Stable LithiumBulfur Batteries. <i>Energy Technology</i> , 2021 , 9, 2001057	3.5	4
384	Phase Selection in MnBi Alloys by Fast Solid-State Reaction with Enhanced Skyrmion Stability. <i>Advanced Functional Materials</i> , 2021 , 31, 2009723	15.6	2
383	Hierarchical Martensite: Building Hierarchical Martensite (Adv. Funct. Mater. 7/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170046	15.6	
382	Towards tellurium-free thermoelectric modules for power generation from low-grade heat. <i>Nature Communications</i> , 2021 , 12, 1121	17.4	36
381	Dynamic Characteristics of a Superconducting Magnetic Bearing Under th Displacements. <i>IEEE Transactions on Applied Superconductivity</i> , 2021 , 31, 1-5	1.8	1
380	Reduced Lattice Thermal Conductivity for Half-Heusler ZrNiSn through Cryogenic Mechanical Alloying. <i>ACS Applied Materials & Acs Acc Applied Materials & Acc Acc Acc Acc Acc Acc Acc Acc Acc A</i>	9.5	11
379	Can gadolinium compete with La-Fe-Co-Si in a thermomagnetic generator?. <i>Science and Technology of Advanced Materials</i> , 2021 , 22, 643-657	7.1	3
378	Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials. <i>Advanced Energy Materials</i> , 2021 , 11, 2101877	21.8	11
377	B20-MnSi films grown on Si(100) substrates with magnetic skyrmion signature. <i>Materials Today Physics</i> , 2021 , 100541	8	
377 376		9.5	2
	Physics, 2021, 100541 High-Performance n-Type Ge-Free Silicon Thermoelectric Material from Silicon Waste. ACS Applied		2
376	Physics, 2021, 100541 High-Performance n-Type Ge-Free Silicon Thermoelectric Material from Silicon Waste. ACS Applied Materials & Description of Multifunctional Heusler Membranes by Dewetting. Advanced Materials Interfaces	9.5	
376 375	Physics, 2021, 100541 High-Performance n-Type Ge-Free Silicon Thermoelectric Material from Silicon Waste. ACS Applied Materials & Description of Multifunctional Heusler Membranes by Dewetting. Advanced Materials Interfaces, 2021, 8, 2100966	9.5	0
376 375 374	High-Performance n-Type Ge-Free Silicon Thermoelectric Material from Silicon Waste. <i>ACS Applied Materials & Description of Multifunctional Heusler Membranes by Dewetting.</i> Self-Patterning of Multifunctional Heusler Membranes by Dewetting. <i>Advanced Materials Interfaces</i> , 2021, 8, 2100966 Interface-Dominated Topological Transport in Nanograined Bulk Bi Te. <i>Small</i> , 2021, 17, e2103281 Efficient and affordable thermomagnetic materials for harvesting low grade waste heat. <i>APL</i>	9.5 4.6	0 2
376 375 374 373	High-Performance n-Type Ge-Free Silicon Thermoelectric Material from Silicon Waste. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47912-47920 Self-Patterning of Multifunctional Heusler Membranes by Dewetting. Advanced Materials Interfaces, 2021, 8, 2100966 Interface-Dominated Topological Transport in Nanograined Bulk Bi Te. Small, 2021, 17, e2103281 Efficient and affordable thermomagnetic materials for harvesting low grade waste heat. APL Materials, 2021, 9, 011105 Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state.	9.5 4.6 11 5.7	0 2 10
376 375 374 373 372	High-Performance n-Type Ge-Free Silicon Thermoelectric Material from Silicon Waste. ACS Applied Materials & amp; Interfaces, 2021, 13, 47912-47920 Self-Patterning of Multifunctional Heusler Membranes by Dewetting. Advanced Materials Interfaces, 2021, 8, 2100966 Interface-Dominated Topological Transport in Nanograined Bulk Bi Te. Small, 2021, 17, e2103281 Efficient and affordable thermomagnetic materials for harvesting low grade waste heat. APL Materials, 2021, 9, 011105 Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state. Nature Physics, 2020, 16, 789-794 Increasing the Diversity and Understanding of Semiconductor Nanoplatelets by Colloidal Atomic	9.5 4.6 11 5.7 16.2	0 2 10 20

368	Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires. <i>Beilstein Journal of Nanotechnology</i> , 2020 , 11, 966-975	3	5
367	Thermoelectric Characterization Platform for Electrochemically Deposited Materials. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901288	6.4	3
366	Thickness dependence of the anomalous Nernst effect and the Mott relation of Weyl semimetal Co2MnGa thin films. <i>Physical Review B</i> , 2020 , 101,	3.3	16
365	Breakdown of Varvenne scaling in (AuNiPdPt)1\(\text{UC}\) high-entropy alloys. <i>Scripta Materialia</i> , 2020 , 181, 15-18	5.6	6
364	Ionic Liquid-Based Low-Temperature Synthesis of Phase-Pure Tetradymite-Type Materials and Their Thermoelectric Properties. <i>Inorganic Chemistry</i> , 2020 , 59, 3428-3436	5.1	9
363	Doping High-Mobility DonorAcceptor Copolymer Semiconductors with an Organic Salt for High-Performance Thermoelectric Materials. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900945	6.4	22
362	Analysis of the high-speed rotary motion of a superconducting magnetic bearing during ring spinning. <i>Engineering Research Express</i> , 2020 , 2, 035039	0.9	2
361	Electrical and Photoelectrical Properties of Zn1MgxO Thin Films Obtained by Spin Coating and Aerosol Deposition Method. <i>IFMBE Proceedings</i> , 2020 , 105-109	0.2	1
360	Wettability control of polymeric microstructures replicated from laser-patterned stamps. <i>Scientific Reports</i> , 2020 , 10, 22428	4.9	5
359	Origins of strength and plasticity in the precious metal based high-entropy alloy AuCuNiPdPt. <i>Acta Materialia</i> , 2020 , 185, 400-411	8.4	12
358	Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900857	6.4	3
357	Signatures of the Magnetic Entropy in the Thermopower Signals in Nanoribbons of the Magnetic Weyl Semimetal CoSnS. <i>Nano Letters</i> , 2020 , 20, 300-305	11.5	7
356	Voltage-controlled ON switching and manipulation of magnetization via the redox transformation of FeOOH nanoplatelets. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 084001	3	8
355	Unveiling the phonon scattering mechanisms in half-Heusler thermoelectric compounds. <i>Energy and Environmental Science</i> , 2020 , 13, 5165-5176	35.4	16
354	Control of Positive and Negative Magnetoresistance in Iron Oxidelron Nanocomposite Thin Films for Tunable Magnetoelectric Nanodevices. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 2543-2549	4	11
353	Voltage-Controlled Deblocking of Magnetization Reversal in Thin Films by Tunable Domain Wall Interactions and Pinning Sites. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000406	6.4	11
352	Fast Fourier transform and multi-Gaussian fitting of XRR data to determine the thickness of ALD grown thin films within the initial growth regime. <i>Applied Physics Letters</i> , 2020 , 117, 213106	3.4	0
351	Influence of the magnet aspect ratio on the dynamic stiffness of a rotating superconducting magnetic bearing. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 035002	3	9

(2019-2019)

350	Electrochemical Deposition by Design of Metal Nanostructures. <i>Surface Engineering and Applied Electrochemistry</i> , 2019 , 55, 367-372	0.8	5
349	Thermoelectric properties of Au and Ti nanofilms, characterized with a novel measurement platform. <i>Materials Today: Proceedings</i> , 2019 , 8, 517-522	1.4	2
348	Towards Uniform Electrochemical Porosification of Bulk HVPE-Grown GaN. <i>Journal of the Electrochemical Society</i> , 2019 , 166, H3159-H3166	3.9	4
347	Transition to the quantum hall regime in InAs nanowire cross-junctions. <i>Semiconductor Science and Technology</i> , 2019 , 34, 035028	1.8	4
346	Nonvolatile Electric Control of Exchange Bias by a Redox Transformation of the Ferromagnetic Layer. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900296	6.4	21
345	Magnetoresistance and anomalous Hall effect in micro-ribbons of the magnetic Weyl semimetal Co3Sn2S2. <i>Applied Physics Letters</i> , 2019 , 114, 092403	3.4	10
344	Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires. <i>Materials Chemistry and Physics</i> , 2019 , 230, 231-238	4.4	5
343	Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4. <i>Chemistry of Materials</i> , 2019 , 31, 2795-2806	9.6	114
342	Atomic Layer Deposition: 2D Transition Metal Dichalcogenide Thin Films Obtained by Chemical Gas Phase Deposition Techniques (Adv. Mater. Interfaces 3/2019). <i>Advanced Materials Interfaces</i> , 2019 , 6, 1970024	4.6	O
341	Electronic entropy change in Ni-doped FeRh. <i>Materials Today Physics</i> , 2019 , 9, 100129	8	5
340	Magneto-thermoelectric characterization of a HfTe5 micro-ribbon. <i>Applied Physics Letters</i> , 2019 , 115, 072109	3.4	4
339	Focused ion beam modification of non-local magnon-based transport in yttrium iron garnet/platinum heterostructures. <i>Applied Physics Letters</i> , 2019 , 114, 252401	3.4	5
338	Spin Hall magnetoresistance in heterostructures consisting of noncrystalline paramagnetic YIG and Pt. <i>Applied Physics Letters</i> , 2019 , 114, 252402	3.4	7
337	Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like magnetic flux topology. <i>Nature Energy</i> , 2019 , 4, 68-74	62.3	37
336	Thermoelectric properties of silicon and recycled silicon sawing waste. <i>Journal of Materiomics</i> , 2019 , 5, 15-33	6.7	15
335	Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. <i>Nature Communications</i> , 2019 , 10, 270	17.4	155
334	Design Guidelines for Micro-Thermoelectric Devices by Finite Element Analysis. <i>Advanced Sustainable Systems</i> , 2019 , 3, 1800093	5.9	3
333	2D Transition Metal Dichalcogenide Thin Films Obtained by Chemical Gas Phase Deposition Techniques. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1800688	4.6	13

332	Electrical Detection and Magnetic Imaging of Stabilized Magnetic Skyrmions in Fe1⊠CoxGe (x Advanced Functional Materials, 2019 , 29, 1805418	15.6	16
331	Influence of artificial pinning centers on structural and superconducting properties of thick YBCO films on ABAD-YSZ templates. <i>Superconductor Science and Technology</i> , 2018 , 31, 044007	3.1	13
330	Simulation of Force Generation Above Magnetic Tracks for Superconducting Levitation Systems. <i>IEEE Transactions on Applied Superconductivity</i> , 2018 , 28, 1-5	1.8	5
329	Understanding the Growth Mechanisms of Multilayered Systems in Atomic Layer Deposition Process. <i>Chemistry of Materials</i> , 2018 , 30, 1971-1979	9.6	10
328	Quantum materials for thermoelectricity. MRS Bulletin, 2018, 43, 187-192	3.2	32
327	Thick Secondary Phase Pinning-Enhanced YBCO Films on Technical Templates. <i>IEEE Transactions on Applied Superconductivity</i> , 2018 , 28, 1-5	1.8	6
326	BaZrxTi1⊠O3 Epitaxial Thin Films for Electrocaloric Investigations. <i>Energy Technology</i> , 2018 , 6, 1526-15	34 3.5	4
325	Reducing Hysteresis Losses by Heating Minor Loops in Magnetocaloric NilMntato Films. <i>Energy Technology</i> , 2018 , 6, 1463-1469	3.5	9
324	Air-Oxidation of Nb Nano-Films. Semiconductors, 2018, 52, 678-682	0.7	2
323	Evolution of the spin hall magnetoresistance in Cr2O3/Pt bilayers close to the Nel temperature. <i>Applied Physics Letters</i> , 2018 , 112, 132401	3.4	35
322	Complete Thermoelectric Characterization of PEDOT:PSS Thin Films with a Novel ZT Test Chip Platform. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 215, 1700930	1.6	12
321	Advanced platform for the in-plane ZT measurement of thin films. <i>Review of Scientific Instruments</i> , 2018 , 89, 015110	1.7	37
320	Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization. <i>Advanced Materials Technologies</i> , 2018 , 3, 1700256	6.8	151
319	Surface Modification of VIII Semiconductors Using Exchange Reactions within ALD Half-Cycles. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701155	4.6	1
318	Role of Hydrogen Evolution during Epitaxial Electrodeposition of Fe on GaAs. <i>Journal of the Electrochemical Society</i> , 2018 , 165, H3076-H3079	3.9	8
317	Ultrahigh Power Factor in Thermoelectric System NbMFeSb (M = Hf, Zr, and Ti). <i>Advanced Science</i> , 2018 , 5, 1800278	13.6	31
316	Modulations in martensitic Heusler alloys originate from nanotwin ordering. <i>Scientific Reports</i> , 2018 , 8, 8489	4.9	30
315	All-electrochemical voltage-control of magnetization in metal oxide/metal nanoislands. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 8411-8417	7.1	27

(2018-2018)

314	Frequency linewidth and decay length of spin waves in curved magnetic membranes. <i>Physical Review B</i> , 2018 , 98,	3.3	7
313	Universum im Kristall. <i>Physik in Unserer Zeit</i> , 2018 , 49, 168-175	0.1	1
312	Thickness and temperature dependent thermoelectric properties of Bi87Sb13 nanofilms measured with a novel measurement platform. <i>Semiconductor Science and Technology</i> , 2018 , 33, 085014	1.8	14
311	Two-Step Magnetization Reversal FORC Fingerprint of Coupled Bi-Segmented Ni/Co Magnetic Nanowire Arrays. <i>Nanomaterials</i> , 2018 , 8,	5.4	13
310	In-Situ Observation of the Reversible Electrochemical Deposition of Fe in a Transmission Electron Microscope. <i>Microscopy and Microanalysis</i> , 2018 , 24, 310-311	0.5	
309	Towards Induction Mapping of the 3D Spin Texture of Skyrmions. <i>Microscopy and Microanalysis</i> , 2018 , 24, 930-931	0.5	O
308	Spin-hall-active platinum thin films grown via atomic layer deposition. <i>Applied Physics Letters</i> , 2018 , 112, 242403	3.4	6
307	Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. <i>Nature Communications</i> , 2018 , 9, 2497	17.4	154
306	Analytical Investigation of the Limits for the In-Plane Thermal Conductivity Measurement Using a Suspended Membrane Setup. <i>Journal of Electronic Materials</i> , 2018 , 47, 3203-3209	1.9	8
305	Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach. <i>Nanotechnology</i> , 2018 , 29, 065602	3.4	22
304	Reducing Thermal Hysteresis in Epitaxial NiMnCaCo Films by Transformation Cycling. <i>Physica Status Solidi (B): Basic Research</i> , 2018 , 255, 1700330	1.3	9
303	The Role of Spatial Coherence for the Creation of Atom Size Electron Vortex Beams. <i>Microscopy and Microanalysis</i> , 2018 , 24, 920-921	0.5	O
302	Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa. <i>Applied Physics Letters</i> , 2018 , 113, 212405	3.4	51
301	Integrated microthermoelectric coolers with rapid response time and high device reliability. <i>Nature Electronics</i> , 2018 , 1, 555-561	28.4	41
300	Levitation force measurement on a switchable track for superconducting levitation systems. <i>Superconductor Science and Technology</i> , 2018 , 31, 125007	3.1	3
299	Universal scaling behavior of the upper critical field in strained FeSe0.7Te0.3 thin films. <i>New Journal of Physics</i> , 2018 , 20, 093012	2.9	3
298	Induction Mapping of the 3D-Modulated Spin Texture of Skyrmions in Thin Helimagnets. <i>Physical Review Letters</i> , 2018 , 120, 217201	7.4	19
297	Probing the Martensitic Microstructure of Magnetocaloric Heusler Films by Synchrotron Diffraction. <i>Energy Technology</i> , 2018 , 6, 1453-1462	3.5	2

296	Intra-wire coupling in segmented Ni/Cu nanowires deposited by electrodeposition. <i>Nanotechnology</i> , 2017 , 28, 065709	3.4	19
295	Influence of Substrate Tilt Angle on the Incorporation of BaHfO3 in Thick YBa2Cu 3O7-Films. <i>IEEE Transactions on Applied Superconductivity</i> , 2017 , 27, 1-4	1.8	6
294	Design and Validation of Switchable Tracks for Superconducting Levitation Systems. <i>IEEE Transactions on Applied Superconductivity</i> , 2017 , 27, 1-5	1.8	6
293	Influence of surface states and size effects on the Seebeck coefficient and electrical resistance of BiSb nanowire arrays. <i>Nanoscale</i> , 2017 , 9, 3169-3179	7.7	9
292	Towards Independent Behavior of Magnetic Slabs. <i>IEEE Magnetics Letters</i> , 2017 , 8, 1-5	1.6	1
291	Gold Electroplating as a Tool for Assessing the Conductivity of InP Nanostructures Fabricated by Anodic Etching of Crystalline Substrates. <i>Journal of the Electrochemical Society</i> , 2017 , 164, D179-D183	3.9	7
290	Superconducting properties of Ba(Fe1Nix)2As2 thin films in high magnetic fields. <i>Applied Physics Letters</i> , 2017 , 110, 022601	3.4	15
289	Symmetry breaking of the surface mediated quantum Hall Effect in Bi 2 Se 3 nanoplates using Fe 3 O 4 substrates. <i>2D Materials</i> , 2017 , 4, 015044	5.9	10
288	Aligned cuboid iron nanoparticles by epitaxial electrodeposition. <i>Nanoscale</i> , 2017 , 9, 5315-5322	7.7	6
287	Nucleation and growth of hierarchical martensite in epitaxial shape memory films. <i>Acta Materialia</i> , 2017 , 132, 327-334	8.4	28
286	Comments on "Evidence of the hydrogen release mechanism in bulk MgH". <i>Scientific Reports</i> , 2017 , 7, 44216	4.9	9
285	Effect of substrate miscut on the microstructure in epitaxial Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films. <i>Materials Characterization</i> , 2017 , 129, 234-241	3.9	5
284	Highly porous ₱Al2O3 ceramics obtained by sintering atomic layer deposited inverse opals. <i>Ceramics International</i> , 2017 , 43, 11260-11264	5.1	25
283	The effect of the microstructure on the antiferromagnetic to ferromagnetic transition in FeRh alloys. <i>Acta Materialia</i> , 2017 , 131, 31-38	8.4	25
282	Fabrication and Modeling of Integrated Micro-Thermoelectric Cooler by Template-Assisted Electrochemical Deposition. <i>ECS Journal of Solid State Science and Technology</i> , 2017 , 6, N3022-N3028	2	12
281	Superconductivity in Ni-Doped Balle As Thin Films Prepared From Single-Crystal Targets Using PLD. <i>IEEE Transactions on Applied Superconductivity</i> , 2017 , 27, 1-4	1.8	8
280	Tailoring Microstructure and Superconducting Properties in Thick BaHfO3 and Ba2 Y(Nb/Ta)O6 Doped YBCO Films on Technical Templates. <i>IEEE Transactions on Applied Superconductivity</i> , 2017 , 27, 1-7	1.8	10
279	Ternary, single-crystalline Bi2 (Te, Se)3 nanowires grown by electrodeposition. <i>Acta Materialia</i> , 2017 , 125, 238-245	8.4	11

(2016-2017)

278	Low-Temperature Mullite Formation in Ternary Oxide Coatings Deposited by ALD for High-Temperature Applications. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700912	4.6	9
277	Electronic structure and magnetism of epitaxial NiMnta(-Co) thin films with partial disorder: a view across the phase transition. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 465005	3	7
276	Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 494007	3	5
275	The influence of the in-plane lattice constant on the superconducting transition temperature of FeSe0.7Te0.3 thin films. <i>AIP Advances</i> , 2017 , 7, 065015	1.5	8
274	Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP. <i>Nature</i> , 2017 , 547, 324-327	50.4	161
273	Improved thermoelectric performance of n-type half-Heusler MCo1-xNixSb (M = Hf, Zr). <i>Materials Today Physics</i> , 2017 , 1, 24-30	8	110
272	Atom size electron vortex beams with selectable orbital angular momentum. <i>Scientific Reports</i> , 2017 , 7, 934	4.9	22
271	Chiral magnetoresistance in the Weyl semimetal NbP. Scientific Reports, 2017, 7, 43394	4.9	55
270	Photonic Materials: Low-Temperature Mullite Formation in Ternary Oxide Coatings Deposited by ALD for High-Temperature Applications (Adv. Mater. Interfaces 23/2017). <i>Advanced Materials Interfaces</i> , 2017 , 4, 1770122	4.6	1
269	Reversible tuning of magnetocaloric´Ni-Mn-Ga-Co films on ferroelectric PMN-PT substrates. <i>Scientific Reports</i> , 2017 , 7, 14462	4.9	7
268	Strain-induced Dirac state shift in topological insulator Bi2Se3 nanowires. <i>Applied Physics Letters</i> , 2017 , 111, 171601	3.4	12
267	Crossover between axial and radial magnetic anisotropy in self-organized permalloy nanowires. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2017 , 223, 120-124	3.1	8
266	Phase Imaging: A Compressive Sensing Approach. <i>Microscopy and Microanalysis</i> , 2017 , 23, 94-95	0.5	0
265	Digital Super-Resolution in EELS. <i>Microscopy and Microanalysis</i> , 2017 , 23, 146-147	0.5	
264	Deposition and properties of Fe(Se,Te) thin films on vicinal CaF2substrates. <i>Superconductor Science and Technology</i> , 2017 , 30, 115008	3.1	7
263	Face Centred Cubic Multi-Component Equiatomic Solid Solutions in the Au-Cu-Ni-Pd-Pt System. <i>Metals</i> , 2017 , 7, 135	2.3	15
262	Monolithically Integrated Microelectromechanical Systems for On-Chip Strain Engineering of Quantum Dots. <i>Nano Letters</i> , 2016 , 16, 5785-91	11.5	20
261	Magnetic and electrical characterization of nickel-rich NiFe thin films synthesized by atomic layer deposition and subsequent thermal reduction. <i>Nanotechnology</i> , 2016 , 27, 345707	3.4	18

260	Berry phase and band structure analysis of the Weyl semimetal NbP. Scientific Reports, 2016, 6, 33859	4.9	29
259	The surface-to-volume ratio: a key parameter in the thermoelectric transport of topological insulator Bi2Se3 nanowires. <i>Nanoscale</i> , 2016 , 8, 13552-7	7.7	21
258	Fabrication of Chemically Tunable, Hierarchically Branched Polymeric Nanostructures by Multi-branched Anodic Aluminum Oxide Templates. <i>Langmuir</i> , 2016 , 32, 6437-44	4	22
257	Electrochemically deposited nanocrystalline InSb thin films and their electrical properties. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1345-1350	7.1	17
256	Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study. Journal Physics D: Applied Physics, 2016 , 49, 145005	3	20
255	Local Magnetic Suppression of Topological Surface States in Bi2Te3 Nanowires. <i>ACS Nano</i> , 2016 , 10, 71	80 <i>6</i> 87	6
254	Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation. <i>APL Materials</i> , 2016 , 4, 064101	5.7	22
253	Research Update: Magnetoionic control of magnetization and anisotropy in layered oxide/metal heterostructures. <i>APL Materials</i> , 2016 , 4, 032301	5.7	27
252	Platform for in-plane ZT measurement and Hall coefficient determination of thin films in a temperature range from 120 K up to 450 K. <i>Journal of Materials Research</i> , 2016 , 31, 3196-3204	2.5	21
251	Structural and ferroelectric properties of epitaxial BaZrxTi1🛭 O3thin films. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 495303	3	5
250	Stability of Alumina Photonic Structures Formed at Low Temperatures Utilizing Chromia-Seeding. <i>Ceramic Transactions</i> , 2016 , 177-186	0.1	
249	Influence of the polarization anisotropy on the electrocaloric effect in epitaxial PMN-PT thin films. <i>Journal of Applied Physics</i> , 2016 , 120, 114102	2.5	6
248	Bottom-up Fabrication of Multilayer Stacks of 3D Photonic Crystals from Titanium Dioxide. <i>ACS Applied Materials & Dioxides amp; Interfaces</i> , 2016 , 8, 10466-76	9.5	15
247	Long-Range Hexagonal Arrangement of TiO2 Nanotubes by Soft Lithography-Guided Anodization. <i>Electrochimica Acta</i> , 2016 , 203, 51-58	6.7	11
246	Electrochemical and in situ magnetic study of iron/iron oxide films oxidized and reduced in KOH solution for magneto-ionic switching. <i>Electrochemistry Communications</i> , 2016 , 72, 153-156	5.1	27
245	Thermoelectric Power Factor Enhancement by Spin-Polarized Currents Annowire Case Study. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600058	6.4	11
244	Surface effects on thermoelectric properties of metallic and semiconducting nanowires. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 557-570	1.6	4
243	From thermoelectric bulk to nanomaterials: Current progress for Bi2Te3 and CoSb3. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 739-749	1.6	16

(2015-2015)

242	Thermoelectric performance of classical topological insulator nanowires. <i>Semiconductor Science and Technology</i> , 2015 , 30, 015015	1.8	34	
241	Synthesis of Iron Oxide Nanorods Using a Template Mediated Approach. <i>Chemistry of Materials</i> , 2015 , 27, 4914-4917	9.6	28	
240	Current-driven vortex domain wall motion in wire-tube nanostructures. <i>Applied Physics Letters</i> , 2015 , 106, 132405	3.4	12	
239	Tuning the polarity of charge transport in InSb nanowires via heat treatment. <i>Nanotechnology</i> , 2015 , 26, 285701	3.4	12	
238	Oersted field assisted magnetization reversal in cylindrical core-shell nanostructures. <i>Journal of Applied Physics</i> , 2015 , 117, 173914	2.5	11	
237	Tailoring the nucleation of domain walls along multi-segmented cylindrical nanoelements. <i>Nanotechnology</i> , 2015 , 26, 215701	3.4	3	
236	Enhanced structural and phase stability of titania inverse opals. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 3103-3109	6	16	
235	Dielectrophoretic investigation of Billelhanowires-a microfabricated thermoelectric characterization platform for measuring the thermoelectric and structural properties of single nanowires. <i>Nanotechnology</i> , 2015 , 26, 125707	3.4	6	
234	Self-Assembled Ultra High Strength, Ultra Stiff Mechanical Metamaterials Based on Inverse Opals. <i>Advanced Engineering Materials</i> , 2015 , 17, 1420-1424	3.5	38	
233	Mechanism that governs the electro-optic response of second-order nonlinear polymers on silicon substrates. <i>Optical Materials Express</i> , 2015 , 5, 1653	2.6	4	
232	TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements. <i>Nanotechnology</i> , 2015 , 26, 335301	3.4	52	
231	Silicon-supported aluminum oxide membranes with ultrahigh aspect ratio nanopores. <i>RSC Advances</i> , 2015 , 5, 94283-94289	3.7	9	
230	Quantitative magnetometry analysis and structural characterization of multisegmented cobaltBickel nanowires. <i>Journal of Magnetism and Magnetic Materials</i> , 2015 , 379, 294-299	2.8	14	
229	Density-Functional Theory Study of Point Defects in Bi2Te3 2015 , 165-186			
228	Magnetothermoelectric power in Co/Pt layered structures: Interface versus bulk contributions. <i>Physical Review B</i> , 2015 , 92,	3.3	7	
227	Electrodeposition of Bi2Te3-Based Thin Films and Nanowires 2015 , 11-32		1	
226	Structure and Transport Properties of Bi2Te3 Films 2015 , 73-98		1	
225	Ab Initio Description of Thermoelectric Properties Based on the Boltzmann Theory 2015 , 187-221			

224	One-dimensional edge transport on the surface of cylindrical BixTe3\(\bar{\partial} \)Sey nanowires in transverse magnetic fields. <i>Applied Physics Letters</i> , 2015 , 107, 181602	3.4	11
223	Bulk-Nanostructured Bi2Te3-Based Materials: Processing, Thermoelectric Properties, and Challenges 2015 , 99-117		1
222	Bi2Te3 Nanowires by Electrodeposition in Polymeric Etched Ion Track Membranes: Synthesis and Characterization 2015 , 33-53		
221	Old and New Things in Thermoelectricity 2015 , 1-10		
220	Development of a Thermoelectric Nanowire Characterization Platform (TNCP) for Structural and Thermoelectric Investigation of Single Nanowires 2015 , 253-281		1
219	High Energy X-ray and Neutron Scattering on Bi2Te3 Nanowires, Nanocomposites, and Bulk Materials 2015 , 119-139		
218	Advanced Structural Characterization of Bi2Te3 Nanomaterials 2015 , 141-163		
217	Fabrication and Comprehensive Structural and Transport Property Characterization of Nanoalloyed Nanostructured V2VI3 Thin Film Materials 2015 , 55-72		
216	Magnon contribution to the magnetoresistance of iron nanowires deposited using pulsed electrodeposition. <i>Physica Status Solidi - Rapid Research Letters</i> , 2015 , 9, 255-258	2.5	3
215	Thermoelectric Properties of Band Structure Engineered Topological Insulator (Bi1\(\text{BSbx} \) 2Te3 Nanowires. <i>Advanced Energy Materials</i> , 2015 , 5, 1500280	21.8	20
214	Measuring Techniques for Thermal Conductivity and Thermoelectric Figure of Merit of VI∕II Compound Thin Films and Nanowires 2015 , 223-252		1
213	Impact of the Topological Surface State on the Thermoelectric Transport in Sb2Te3 Thin Films. <i>ACS Nano</i> , 2015 , 9, 4406-11	16.7	44
212	Unveiling the Hard Anodization Regime of Aluminum: Insight into Nanopores Self-Organization and Growth Mechanism. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 28682-92	9.5	53
211	Control of persistent photoconductivity in nanostructured InP through morphology design. <i>Semiconductor Science and Technology</i> , 2015 , 30, 035014	1.8	9
21 0	Self-Assembled Monolayer of Au Nanodots Deposited on Porous Semiconductor Structures. <i>ECS Electrochemistry Letters</i> , 2015 , 4, D8-D10		10
209	G? band in double- and triple-walled carbon nanotubes: A Raman study. <i>Physical Review B</i> , 2015 , 91,	3.3	15
208	Role of intertube interactions in double- and triple-walled carbon nanotubes. ACS Nano, 2014 , 8, 1330-2	116.7	20
207	Electrochemical synthesis of coaxial TiO2Ag nanowires and their application in photocatalytic water splitting. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2648-2656	13	34

206	Low Temperature Stabilization of Nanoscale Epitaxial Spinel Ferrite Thin Films by Atomic Layer Deposition. <i>Advanced Functional Materials</i> , 2014 , 24, 5368-5374	15.6	36
205	Constrained Order in Nanoporous Alumina with High Aspect Ratio: Smart Combination of Interference Lithography and Hard Anodization. <i>Advanced Functional Materials</i> , 2014 , 24, 1857-1863	15.6	25
204	Magnetothermopower and magnetoresistance of single Co-Ni/Cu multilayered nanowires. <i>Physical Review B</i> , 2014 , 90,	3.3	46
203	Formation of InP nanomembranes and nanowires under fast anodic etching of bulk substrates. <i>Electrochemistry Communications</i> , 2014 , 47, 29-32	5.1	11
202	Polymer-assisted self-assembly of superparamagnetic iron oxide nanoparticles into well-defined clusters: controlling the collective magnetic properties. <i>Langmuir</i> , 2014 , 30, 11190-6	4	37
201	Template-assisted Co N i alloys and multisegmented nanowires with tuned magnetic anisotropy. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 1041-1047	1.6	42
200	Are Binary Copper Sulfides/Selenides Really New and Promising Thermoelectric Materials?. <i>Advanced Energy Materials</i> , 2014 , 4, 1301581	21.8	169
199	Deposition of topological insulator Sb2Te3 films by an MOCVD process. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8215	13	35
198	Magnetothermoelectric figure of merit of Co/Cu multilayers. <i>Applied Physics Letters</i> , 2014 , 104, 092411	3.4	12
197	Electrochemical synthesis and magnetic characterization of periodically modulated Co nanowires. <i>Nanotechnology</i> , 2014 , 25, 145301	3.4	45
196	Growth of ZnCdS single crystals and prospects of their application as nanoporous structures. <i>Semiconductor Science and Technology</i> , 2014 , 29, 125003	1.8	12
195	The effect of a distinct diameter variation on the thermoelectric properties of individual Bi0.39Te0.61nanowires. <i>Semiconductor Science and Technology</i> , 2014 , 29, 124006	1.8	22
194	Temperature and bias-voltage dependence of atomic-layer-deposited HfO2-based magnetic tunnel junctions. <i>Applied Physics Letters</i> , 2014 , 105, 132405	3.4	5
193	Electrochemical synthesis of highly ordered nanowires with a rectangular cross section using an in-plane nanochannel array. <i>Nanotechnology</i> , 2014 , 25, 504002	3.4	7
192	Thermoelectric properties of topological insulator Bi2Te3, Sb2Te3, and Bi2Se3 thin film quantum wells. <i>Applied Physics Letters</i> , 2014 , 105, 123117	3.4	62
191	Magnetic characterization and electrical field-induced switching of magnetite thin films synthesized by atomic layer deposition and subsequent thermal reduction. <i>Journal Physics D:</i> Applied Physics, 2014 , 47, 485001	3	15
190	Resolving the Dirac cone on the surface of Bi2Te3 topological insulator nanowires by field-effect measurements. <i>Applied Physics Letters</i> , 2014 , 104, 243115	3.4	27
189	Kinetics of the charge ordering in magnetite below the Verwey temperature. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 472202	1.8	1

188	Thermopower engineering of Bi2Te3without alloying: the interplay between nanostructuring and defect activation. <i>Semiconductor Science and Technology</i> , 2014 , 29, 064003	1.8	25
187	The influence of a Te-depleted surface on the thermoelectric transport properties of Billell nanowires. <i>Nanotechnology</i> , 2014 , 25, 365401	3.4	10
186	Porosification of IIIIV and IIIVI Semiconductor Compounds. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2014 , 9, 307-311	1.3	7
185	Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates. <i>Nanoscale Research Letters</i> , 2013 , 8, 263	5	50
184	Thermoelectric characterization of bismuth telluride nanowires, synthesized via catalytic growth and post-annealing. <i>Advanced Materials</i> , 2013 , 25, 239-44	24	73
183	Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments. <i>Journal of Magnetism and Magnetic Materials</i> , 2013 , 346, 171-174	2.8	23
182	Multisegmented nanotubes by surface-selective atomic layer deposition. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 621-625	7.1	11
181	Thermoelectric power factor of ternary single-crystalline Sb2Te3- and Bi2Te3-based nanowires. <i>Nanotechnology</i> , 2013 , 24, 495402	3.4	36
180	Electrical conductivity and Seebeck coefficient measurements of single nanowires by utilizing a microfabricated thermoelectric nanowire characterization platform 2013 ,		6
179	Large thermoelectric power factor enhancement observed in InAs nanowires. <i>Nano Letters</i> , 2013 , 13, 4080-6	11.5	100
179 178		11.5 7.7	100
	13, 4080-6		
178	13, 4080-6 Phonon spectroscopy in a Bi2Te3 nanowire array. <i>Nanoscale</i> , 2013 , 5, 10629-35 Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates.	7.7	14
178	13, 4080-6 Phonon spectroscopy in a Bi2Te3 nanowire array. <i>Nanoscale</i> , 2013 , 5, 10629-35 Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates. <i>Nanoscale</i> , 2013 , 5, 5825-32	7·7 7·7	14
178 177 176	Phonon spectroscopy in a Bi2Te3 nanowire array. <i>Nanoscale</i> , 2013 , 5, 10629-35 Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates. <i>Nanoscale</i> , 2013 , 5, 5825-32 Dreiwandige Kohlenstoff-NanorBren atmen lassen. <i>Physik in Unserer Zeit</i> , 2013 , 44, 215-216 Investigation on the homogeneity of pulsed electrochemically deposited thermoelectric films with	7·7 7·7 0.1	5
178 177 176	Phonon spectroscopy in a Bi2Te3 nanowire array. <i>Nanoscale</i> , 2013 , 5, 10629-35 Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates. <i>Nanoscale</i> , 2013 , 5, 5825-32 Dreiwandige Kohlenstoff-Nanorfiren atmen lassen. <i>Physik in Unserer Zeit</i> , 2013 , 44, 215-216 Investigation on the homogeneity of pulsed electrochemically deposited thermoelectric films with synchrotron EXRF, EXRD and EXANES. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4215 Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties.	7·7 7·7 0.1	14 5
178 177 176 175	Phonon spectroscopy in a Bi2Te3 nanowire array. <i>Nanoscale</i> , 2013 , 5, 10629-35 Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates. <i>Nanoscale</i> , 2013 , 5, 5825-32 Dreiwandige Kohlenstoff-NanorBren atmen lassen. <i>Physik in Unserer Zeit</i> , 2013 , 44, 215-216 Investigation on the homogeneity of pulsed electrochemically deposited thermoelectric films with synchrotron EXRF, EXRD and EXANES. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4215 Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14080 Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman	7.7 7.7 0.1 13	14 5 3 26

(2012-2013)

170	Thermoelectric transport and Hall measurements of low defect Sb2Te3thin films grown by atomic layer deposition. <i>Semiconductor Science and Technology</i> , 2013 , 28, 035010	1.8	62	
169	Changes in morphology and ionic transport induced by ALD SiOlcoating of nanoporous alumina membranes. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3556-64	9.5	54	
168	Domain wall control in wire-tube nanoelements. <i>Applied Physics Letters</i> , 2013 , 102, 202407	3.4	20	
167	Aharonov-Bohm oscillations and weak antilocalization in topological insulator Sb2Te3 nanowires. <i>Applied Physics Letters</i> , 2013 , 102, 223110	3.4	46	
166	Field-dependent thermal conductivity and Lorenz number in Co/Cu multilayers. <i>Physical Review B</i> , 2013 , 87,	3.3	15	
165	Optimizations of Pulsed Plated p and n-type Bi2Te3-Based Ternary Compounds by Annealing in Different Ambient Atmospheres. <i>Advanced Energy Materials</i> , 2013 , 3, 95-104	21.8	70	
164	Photonic properties of titania inverse opal heterostructures. Optical Materials Express, 2013, 3, 1007	2.6	16	
163	Gate voltage induced phase transition in magnetite nanowires. <i>Applied Physics Letters</i> , 2013 , 102, 0731	13.4	21	
162	Magnetotransport and thermopower of single Bi0.92Sb0.08 nanowires. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 898-902	2.5	4	
161	Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires. <i>Applied Physics Letters</i> , 2013 , 103, 092407	3.4	63	
160	Electrical transport in C-doped GaAs nanowires: surface effects. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 890-893	2.5	13	
159	A MEMS platform for the dielectrophoretic and thermoelectric characterization of Bi2Te3 nanowires 2013 ,		1	
158	Single-Source Precursor-Based Deposition of Sb2Te3 Films by MOCVD**. <i>Chemical Vapor Deposition</i> , 2013 , 19, 235-241		31	
157	Surface state dominated transport in topological insulator Bi2Te3 nanowires. <i>Applied Physics Letters</i> , 2013 , 103, 193107	3.4	50	
156	Stoichiometry Controlled, Single-Crystalline Bi2Te3 Nanowires for Transport in the Basal Plane. <i>Advanced Functional Materials</i> , 2012 , 22, 151-156	15.6	46	
155	Magneto-optical properties of core-shell magneto-plasmonic Au-Co(x)Fe(3 - x)O4 nanowires. <i>Langmuir</i> , 2012 , 28, 9127-30	4	36	
154	REMOVED: Effect of Ald Sio2 Surface Coverage of a Nanoporous Alumina Membrane on Electrical and Transport Parameters. <i>Procedia Engineering</i> , 2012 , 44, 707-709			
153	Magnetization reversal in multisegmented nanowires: Parallel and serial reversal modes. <i>Applied Physics Letters</i> , 2012 , 101, 122412	3.4	12	

152 Coatings of Nanoparticles and Nanowires **2012**, 251-270

151	Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8549		65
150	Stacking of Ceramic Inverse Opals with Different Lattice Constants. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 2226-2235	3.8	21
149	Depth-profile analysis of thermoelectric layers on Si wafers by pulsed r.f. glow discharge time-of-flight mass spectrometry. <i>Spectrochimica Acta, Part B: Atomic Spectroscopy,</i> 2012 , 76, 175-180	3.1	14
148	Reversal modes and magnetostatic interactions in Fe3O4/ZrO2/Fe3O4 multilayer nanotubes. <i>Nanotechnology</i> , 2012 , 23, 495718	3.4	31
147	Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. <i>Nanotechnology</i> , 2012 , 23, 465709	3.4	102
146	Optimization of Electrodeposited p-Doped Sb2Te3 Thermoelectric Films by Millisecond Potentiostatic Pulses. <i>Advanced Energy Materials</i> , 2012 , 2, 345-352	21.8	56
145	Single-Crystalline, Stoichiometric Bi2Te3 Nanowires for Transport in the Basal Plane. <i>Journal of Electronic Materials</i> , 2012 , 41, 1509-1512	1.9	9
144	Nanostructure, Excitations, and Thermoelectric Properties of Bi2Te3-Based Nanomaterials. <i>Journal of Electronic Materials</i> , 2012 , 41, 1792-1798	1.9	19
143	Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2012 , 29, 450	1.7	25
142	Insights into the electronic structure of Co2FeSi from x-ray magnetic linear dichroism. <i>Physical Review B</i> , 2012 , 86,	3.3	19
141	Enhanced magneto-thermoelectric power factor of a 70 nm Ni-nanowire. <i>Journal of Applied Physics</i> , 2012 , 111, 104320	2.5	28
140	Synthesis Approaches of Inorganic Nanotubes 2011 , 413-429		
139	Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes. <i>Journal of Applied Physics</i> , 2011 , 109, 093910	2.5	72
138	Magnetic reversal of cylindrical nickel nanowires with modulated diameters. <i>Journal of Applied Physics</i> , 2011 , 109, 033907	2.5	57
137	Low loss EELS and EFTEM study of Bi2Te3 based bulk and nanomaterials. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1329, 1		6
136	Understanding pore rearrangement during mild to hard transition in bilayered porous anodic alumina membranes. <i>ACS Applied Materials & Discreta (Materials & Discreta (Materials</i>	9.5	38
135	Surface modification and fabrication of 3D nanostructures by atomic layer deposition. <i>MRS Bulletin</i> , 2011 , 36, 887-897	3.2	53

(2010-2011)

134	Thermal conductivity measurements using 11and 31methods revisited for voltage-driven setups. <i>Review of Scientific Instruments</i> , 2011 , 82, 074903	1.7	17
133	Nickel nanoparticles in fullerene matrix fabricated by co-evaporation: structural, magnetic, and magneto-optical properties. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 103, 433-438	2.6	6
132	Structural and magnetic phenomena in ultrathin C/Co/C stacks prepared by DC magnetron sputtering. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 1698-1703	1.6	3
131	Ferromagnetism and Morphology of Annealed Fe2O3/CoXOY/ZnO Thin Films. <i>Advanced Engineering Materials</i> , 2011 , 13, 330-335	3.5	
130	Magnetic, Multilayered Nanotubes of Low Aspect Ratios for Liquid Suspensions. <i>Advanced Functional Materials</i> , 2011 , 21, 226-232	15.6	34
129	Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites. <i>Advanced Energy Materials</i> , 2011 , 1, 713-731	21.8	193
128	Stoichiometry of Nickel Oxide Films Prepared by ALD. <i>Chemical Vapor Deposition</i> , 2011 , 17, 177-180		35
127	Precision improvements by the use of principal component regression and pooled regression applied to main component determinations with ICP-OES for thermoelectric films. <i>Journal of Analytical Atomic Spectrometry</i> , 2011 , 26, 2477	3.7	11
126	Towards ceramic 3DOM-materials as novel high-temperature reflective coatings and filters for thermophotovoltaics. <i>IOP Conference Series: Materials Science and Engineering</i> , 2011 , 18, 182004	0.4	2
125	Synthesis and magnetic characterization of MnAs nanoparticles via nanoparticle conversion. <i>Nanotechnology</i> , 2011 , 22, 055602	3.4	10
124	Processing of hollow micro- and nanostructures using the hydrophilic nature of MgO. <i>Precision Engineering</i> , 2011 , 35, 496-499	2.9	4
123	Superparamagnetic behavior in cobalt iron oxide nanotube arrays by atomic layer deposition. Journal of Applied Physics, 2011 , 110, 043930	2.5	14
122	Photoemission electron microscopy of three-dimensional magnetization configurations in core-shell nanostructures. <i>Physical Review B</i> , 2011 , 84,	3.3	44
121	Itinerant and localized magnetic moments in ferrimagnetic Mn2CoGa thin films probed by x-ray magnetic linear dichroism: Experiment and ab initio theory. <i>Physical Review B</i> , 2011 , 84,	3.3	49
120	(Invited) Tailor-Made, Magnetic Nanotubes by Template-Directed Atomic Layer Deposition. <i>ECS Transactions</i> , 2011 , 41, 111-121	1	5
119	Stability of magnetic nanoparticles inside ferromagnetic nanotubes. <i>Applied Physics Letters</i> , 2011 , 98, 022502	3.4	10
118	Low temperature silicon dioxide by thermal atomic layer deposition: Investigation of material properties. <i>Journal of Applied Physics</i> , 2010 , 107, 064314	2.5	73
117	Direct Atomic Layer Deposition of Ternary Ferrites with Various Magnetic Properties. <i>Chemistry of Materials</i> , 2010 , 22, 6506-6508	9.6	38

116	The transition between conformal atomic layer epitaxy and nanowire growth. <i>Journal of the American Chemical Society</i> , 2010 , 132, 7592-4	16.4	20
115	Multiple nanowire species synthesized on a single chip by selectively addressable horizontal nanochannels. <i>Nano Letters</i> , 2010 , 10, 1341-6	11.5	20
114	Disproportionation of thermoelectric bismuth telluride nanowires as a result of the annealing process. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 15247-50	3.6	27
113	Power factor measurements of bismuth telluride nanowires grown by pulsed electrodeposition. <i>Physica Status Solidi - Rapid Research Letters</i> , 2010 , 4, 43-45	2.5	21
112	Temperature-Dependent Solid-State Reactions With and Without Kirkendall Effect in Al2O3/ZnO, Fe2O3/ZnO, and CoXOY/ZnO Oxide Thin Film Systems. <i>Advanced Engineering Materials</i> , 2010 , 12, 509-5	1 6 5	9
111	Multilayered core/shell nanowires displaying two distinct magnetic switching events. <i>Advanced Materials</i> , 2010 , 22, 2435-9	24	96
110	A novel synthesis of ultrathin CoPt3 nanowires by dealloying larger diameter Co99Pt1 nanowires and subsequent stress-induced crack propagation. <i>Electrochemistry Communications</i> , 2010 , 12, 835-838	5.1	8
109	Electrochemical route to thermoelectric nanowires via organic electrolytes. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 1384-1392	1.3	12
108	Tubular magnetic nanostructures based on glancing angle deposited templates and atomic layer deposition. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 1365-1371	1.3	21
107	Preparation and magnetoviscosity of nanotube ferrofluids by viral scaffolding and ALD on porous templates. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2412-2423	1.3	19
106	Atomic layer deposition of ZnS nanotubes. <i>Nanotechnology</i> , 2009 , 20, 325602	3.4	20
105	Size effects in ordered arrays of magnetic nanotubes: Pick your reversal mode. <i>Journal of Applied Physics</i> , 2009 , 105, 07B521	2.5	55
104	Wafer-scale arrays of epitaxial ferroelectric nanodiscs and nanorings. <i>Nanotechnology</i> , 2009 , 20, 015301	13.4	13
103	Pulsed Vapor-Liquid-Solid Growth of Antimony Selenide and Antimony Sulfide Nanowires. <i>Advanced Materials</i> , 2009 , 21, 3170-3174	24	46
102	A micron-sized nanoporous multifunction sensing device. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2009 , 206, 435-441	1.6	12
101	Domain wall propagation in Permalloy nanowires with a thickness gradient. <i>Superlattices and Microstructures</i> , 2009 , 46, 728-731	2.8	1
100	Magnetic cylindrical nanowires with single modulated diameter. Physical Review B, 2009, 80,	3.3	27
99	Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes. <i>ACS Nano</i> , 2009 , 3, 3463-8	16.7	100

98	A novel approach for fabrication of bismuth-silicon dioxide core-shell structures by atomic layer deposition. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7050		23
97	Local modes and two magnon scattering in ordered permalloy antidot arrays. <i>Journal of Applied Physics</i> , 2009 , 105, 07C113	2.5	18
96	Atomic Layer Deposition of Antimony Oxide and Antimony Sulfide. <i>Chemistry of Materials</i> , 2009 , 21, 258	3 6. Ø58	8 28
95	Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. <i>ACS Nano</i> , 2008 , 2, 302-10	16.7	198
94	Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes. <i>Physical Review B</i> , 2008 , 77,	3.3	134
93	Patterning of magnetic structures on austenitic stainless steel by local ion beam nitriding. <i>Acta Materialia</i> , 2008 , 56, 4570-4576	8.4	16
92	Tuning the crystallinity of thermoelectric Bi(2)Te(3) nanowire arrays grown by pulsed electrodeposition. <i>Nanotechnology</i> , 2008 , 19, 365701	3.4	8o
91	Manipulating feature sizes in Si-based grating structures by thermal oxidation. <i>Nanotechnology</i> , 2008 , 19, 325305	3.4	2
90	Magnetization dynamics in optically excited nanostructured nickel films. <i>New Journal of Physics</i> , 2008 , 10, 123004	2.9	12
89	A practical, self-catalytic, atomic layer deposition of silicon dioxide. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6177-9	16.4	120
88	Selbstkatalytische Atomlagenabscheidung von Siliciumdioxid. <i>Angewandte Chemie</i> , 2008 , 120, 6272-627	74 .6	5
87	Microstructure and temperature-dependent magnetic properties of Co/Pt multilayered nanowires. <i>Chemical Physics Letters</i> , 2008 , 466, 165-169	2.5	26
86	Microstructured horizontal alumina pore arrays as growth templates for large area few and single nanowire devices. <i>Physica Status Solidi - Rapid Research Letters</i> , 2008 , 2, 59-61	2.5	11
85	Aligned Horizontal Silica Nanochannels by Oxidative Self-Sealing of Patterned Silicon Wafers. <i>Chemistry of Materials</i> , 2007 , 19, 3-5	9.6	19
84	Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9554-5	16.4	219
83	Ordered Ni nanohole arrays with engineered geometrical aspects and magnetic anisotropy. <i>Applied Physics Letters</i> , 2007 , 90, 192501	3.4	53
82	Formation of titania/silica hybrid nanowires containing linear mesocage arrays by evaporation-induced block-copolymer self-assembly and atomic layer deposition. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 6829-32	16.4	25
81	Formation of Titania/Silica Hybrid Nanowires Containing Linear Mesocage Arrays by Evaporation-Induced Block-Copolymer Self-Assembly and Atomic Layer Deposition. <i>Angewandte Chemie</i> , 2007 , 119, 6953-6956	3.6	3

80	Enhanced Magneto-Optics and Size Effects in Ferromagnetic Nanowire Arrays. <i>Advanced Materials</i> , 2007 , 19, 2643-2647	24	82
79	Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition. <i>Advanced Materials</i> , 2007 , 19, 3425-3438	24	728
78	Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays. <i>Small</i> , 2007 , 3, 76-80	11	86
77	Fabrication and magnetic properties of hexagonal arrays of NiFe elongated nanomagnets. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 316, e44-e47	2.8	12
76	Template-based Synthesis and Characterization of High-density Ferromagnetic Nanowire Arrays 2007 ,		2
75	Magnetic properties of bi-phase micro- and nanotubes. <i>Nanotechnology</i> , 2007 , 18, 225704	3.4	14
74	Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes. <i>Journal of Applied Physics</i> , 2007 , 101, 09J111	2.5	154
73	Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: the basic concept. <i>Nano Letters</i> , 2007 , 7, 993-7	11.5	337
72	Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization. <i>Nanotechnology</i> , 2007 , 18, 475713	3.4	110
71	Ferromagnetic Nanostructures by Atomic Layer Deposition: From Thin Films Towards Core-Shell Nanotubes. <i>ECS Transactions</i> , 2007 , 11, 139-148	1	15
70	Angular dependence of coercivity in magnetic nanotubes. <i>Nanotechnology</i> , 2007 , 18, 445706	3.4	71
69	Templated Fabrication of Nanowire and Nanoring Arrays Based on Interference Lithography and Electrochemical Deposition. <i>Advanced Materials</i> , 2006 , 18, 2593-2596	24	73
68	Additive patterning of ion-beam-sputtered non-conformal Ni80Fe20and Co70Fe30magnetic films. <i>Nanotechnology</i> , 2006 , 17, 2040-2045	3.4	8
67	Atomic Layer Deposition on Biological Macromolecules. <i>ECS Transactions</i> , 2006 , 3, 219-225	1	5
66	Spin waves in permalloy nanowires: The importance of easy-plane anisotropy. <i>Physical Review B</i> , 2006 , 73,	3.3	21
65	Single-crystalline MgAl2O4spinel nanotubes using a reactive and removable MgO nanowire template. <i>Nanotechnology</i> , 2006 , 17, 5157-5162	3.4	63
64	Atomic layer deposition on biological macromolecules: metal oxide coating of tobacco mosaic virus and ferritin. <i>Nano Letters</i> , 2006 , 6, 1172-7	11.5	183
63	Surface-enhanced Raman spectroscopy employing monodisperse nickel nanowire arrays. <i>Applied Physics Letters</i> , 2006 , 88, 023106	3.4	33

(2005-2006)

62	Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications. <i>Small</i> , 2006 , 2, 561-8	11	194
61	Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography. <i>Small</i> , 2006 , 2, 978-82	11	126
60	Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. <i>Nature Materials</i> , 2006 , 5, 627-31	27	642
59	Fast fabrication of long-range ordered porous alumina membranes by hard anodization. <i>Nature Materials</i> , 2006 , 5, 741-7	27	1112
58	Enhancement of weak anti-localization signatures in the magneto-resistance of bismuth anti-dot thin films. <i>Applied Physics A: Materials Science and Processing</i> , 2006 , 82, 471-474	2.6	7
57	Vertical nanopatterning of 6H-SiC(0001) surfaces using gold-metal nanotube membrane lithography. <i>Applied Physics A: Materials Science and Processing</i> , 2006 , 83, 361-363	2.6	8
56	Etching nano-holes in silicon carbide using catalytic platinum nano-particles. <i>Applied Physics A: Materials Science and Processing</i> , 2006 , 84, 369-371	2.6	8
55	Growth and characterization of epitaxial ferroelectric lanthanum-substituted bismuth titanate nanostructures with three different orientations. <i>Journal of Applied Physics</i> , 2005 , 98, 124302	2.5	7
54	High-Density Nickel Nanowire Arrays 2005 , 165-184		
53	Metal Membranes with Hierarchically Organized Nanotube Arrays. <i>Chemistry of Materials</i> , 2005 , 17, 33	2593332	7 68
53 52	Metal Membranes with Hierarchically Organized Nanotube Arrays. <i>Chemistry of Materials</i> , 2005 , 17, 33 In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays. <i>Journal of Applied Physics</i> , 2005 , 97, 024308	2593B2 2.5	7 68 38
	In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays. <i>Journal of</i>		
52	In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays. <i>Journal of Applied Physics</i> , 2005 , 97, 024308 Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed	2.5	38
52 51	In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays. <i>Journal of Applied Physics</i> , 2005 , 97, 024308 Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. <i>Nanotechnology</i> , 2005 , 16, 913-917 Magnetic behavior of NixFe(100🛭) (65?x?100) nanowire arrays. <i>Journal of Magnetism and Magnetic</i>	2.5	38 138
52 51 50	In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays. <i>Journal of Applied Physics</i> , 2005 , 97, 024308 Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. <i>Nanotechnology</i> , 2005 , 16, 913-917 Magnetic behavior of NixFe(100🛘) (65?x?100) nanowire arrays. <i>Journal of Magnetism and Magnetic Materials</i> , 2005 , 290-291, 191-194 A template-based electrochemical method for the synthesis of multisegmented metallic	2.5 3.4 2.8	38 138 20
52 51 50 49	In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays. <i>Journal of Applied Physics</i> , 2005 , 97, 024308 Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. <i>Nanotechnology</i> , 2005 , 16, 913-917 Magnetic behavior of NixFe(100🗵) (65?x?100) nanowire arrays. <i>Journal of Magnetism and Magnetic Materials</i> , 2005 , 290-291, 191-194 A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 6050-4 A Template-Based Electrochemical Method for the Synthesis of Multisegmented Metallic	2.5 3.4 2.8	38 138 20 231
52 51 50 49 48	In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays. <i>Journal of Applied Physics</i> , 2005 , 97, 024308 Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. <i>Nanotechnology</i> , 2005 , 16, 913-917 Magnetic behavior of NixFe(100½) (65?x?100) nanowire arrays. <i>Journal of Magnetism and Magnetic Materials</i> , 2005 , 290-291, 191-194 A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 6050-4 A Template-Based Electrochemical Method for the Synthesis of Multisegmented Metallic Nanotubes. <i>Angewandte Chemie</i> , 2005 , 117, 6204-6208	2.5 3.4 2.8 16.4 3.6	38 138 20 231 45

44	Anisotropy and magnetotransport in ordered magnetic antidot arrays. <i>Applied Physics Letters</i> , 2004 , 85, 2872-2874	3.4	63
43	Hexagonal-arranged ZnO Nanowire Arrays by Using Au Nanohole Membranes as Fabrication Template. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 849, 154		
42	FMR characterization of hexagonal arrays of Ni nanowires. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, 1652-1653	2.8	26
41	Modelling hysteresis of interacting nanowires arrays. <i>Physica B: Condensed Matter</i> , 2004 , 343, 395-402	2.8	46
40	Patterned growth of aligned ZnO nanowire arrays on sapphire and GaN layers. <i>Superlattices and Microstructures</i> , 2004 , 36, 95-105	2.8	67
39	Study of the magnetic hysteresis in arrays of ferromagnetic Fe nanowires as a function of the template filling fraction. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, 1656-1657	2.8	36
38	Novel magnetic materials prepared by electrodeposition techniques: arrays of nanowires and multi-layered microwires. <i>Journal of Alloys and Compounds</i> , 2004 , 369, 18-26	5.7	77
37	Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio. <i>Chemistry of Materials</i> , 2003 , 15, 776-779	9.6	214
36	Magneto-optical properties of nickel nanowire arrays. <i>Applied Physics Letters</i> , 2003 , 83, 4547-4549	3.4	80
35	Monodisperse metal nanowire arrays on Si by integration of template synthesis with silicon technology. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1100-1103		45
34	Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2003 , 21, 763		114
33	Monodisperse Diameter-Modulated Gold Microwires. Advanced Materials, 2002, 14, 1618-1621	24	60
32	High aspect ratio microstructures based on anisotropic porous materials. <i>Microsystem Technologies</i> , 2002 , 8, 7-9	1.7	18
31	High density hexagonal nickel nanowire array. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 249, 234-240	2.8	130
30	Self-ordering Regimes of Porous Alumina: The 10 Porosity Rule. <i>Nano Letters</i> , 2002 , 2, 677-680	11.5	853
29	Large-area porous alumina photonic crystals via imprint method. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 722, 521		23
28	Spin-wave quantization in ferromagnetic nickel nanowires. <i>Physical Review Letters</i> , 2002 , 89, 027201	7.4	145
27	Switching behavior of single nanowires inside dense nickel nanowire arrays. <i>IEEE Transactions on Magnetics</i> , 2002 , 38, 2571-2573	2	63

26	Polymer nanotubes by wetting of ordered porous templates. <i>Science</i> , 2002 , 296, 1997	33.3	752
25	Highly ordered monocrystalline silver nanowire arrays. <i>Journal of Applied Physics</i> , 2002 , 91, 3243-3247	2.5	330
24	Magnetization reversal in granular nanowires. IEEE Transactions on Magnetics, 2002, 38, 2580-2582	2	18
23	Hexagonally ordered 100 nm period nickel nanowire arrays. <i>Applied Physics Letters</i> , 2001 , 79, 1360-1362	23.4	490
22	High Density Hexagonal Nickel Nanowire Arrays with 65 and 100 nm-PERIOD. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 705, 931		2
21	Magnetic Properties of 100 NM-Period Nickel Nanowire Arrays Obtained from Ordered Porous-Alumina Templates. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 636, 191		13
20	Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition. <i>Advanced Materials</i> , 2000 , 12, 582-586	24	719
19	Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition 2000 , 12, 582		4
18	Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition 2000 , 12, 582		64
17	Polycrystalline nanopore arrays with hexagonal ordering on aluminum. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1999 , 17, 1428-1431	2.9	112
16	Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alumina. <i>Advanced Materials</i> , 1999 , 11, 483-487	24	245
15	Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alumina 1999 , 11, 483		2
14	Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alumina 1999 , 11, 483		11
13	Hexagonal pore arrays with a 50½20 nm interpore distance formed by self-organization in anodic alumina. <i>Journal of Applied Physics</i> , 1998 , 84, 6023-6026	2.5	1316
12	Monodisperse aerosol particle deposition: Prospects for nanoelectronics. <i>Microelectronic Engineering</i> , 1998 , 41-42, 535-538	2.5	31
11	Feasibility study of nanoparticle synthesis from powders of compounds with incongruent sublimation behavior by the evaporation/condensation method. <i>Scripta Materialia</i> , 1998 , 10, 565-573		7
10	Preparation of size-classified PbS nanoparticles in the gas phase. <i>Applied Physics Letters</i> , 1998 , 73, 547-5	5494	51
9	Formation of ultrafine particles from powders of compounds with incongruent sublimation behavior. <i>Journal of Aerosol Science</i> , 1997 , 28, S495-S496	4.3	1

8	Synthesis of nano-sized lead sulfide particles. <i>Journal of Aerosol Science</i> , 1997 , 28, S755-S756	4.3	4
7	Geometric Study of Polymer Embedded Micro Thermoelectric Cooler with Optimized Contact Resistance. <i>Advanced Electronic Materials</i> ,2101042	6.4	1
6	State with spontaneously broken time-reversal symmetry above the superconducting phase transition. <i>Nature Physics</i> ,	16.2	4
5	Effect of Powder ALD Interface Modification on the Thermoelectric Performance of Bismuth. <i>Advanced Materials Technologies</i> ,2100953	6.8	7
4	Comparative study of Fe(Se,Te) thin films on flexible coated conductor templates and single-crystal substrates. <i>Superconductor Science and Technology</i> ,	3.1	1
3	Low-Temperature Atomic Layer Deposition of High- k SbO x for Thin Film Transistors. <i>Advanced Electronic Materials</i> ,2101334	6.4	4
2	Crystal Structure Analysis and Magneto-Transport Investigation of Co 1 \mathbb{R} Fe x Si (with x $'$ = 0% to x $'$ = 20%). Advanced Electronic Materials,2101081	6.4	
1	Characteristics of ALD-ZnO Thin Film Transistor Using H 2 O and H 2 O 2 as Oxygen Sources. <i>Advanced Materials Interfaces</i> ,2101953	4.6	2