Christopher D Link

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8268838/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7607-7612.	7.1	523
2	RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2734-2739.	7.1	402
3	Amyloid-Â-Induced Pathological Behaviors Are Suppressed by Ginkgo biloba Extract EGb 761 and Ginkgolides in Transgenic Caenorhabditis elegans. Journal of Neuroscience, 2006, 26, 13102-13113.	3.6	359
4	Oxidative stress precedes fibrillar deposition of Alzheimer's disease amyloid β-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiology of Aging, 2003, 24, 415-420.	3.1	345
5	Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nature Neuroscience, 2015, 18, 1175-1182.	14.8	330
6	C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nature Neuroscience, 2016, 19, 668-677.	14.8	268
7	Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer's disease model. Neurobiology of Aging, 2003, 24, 397-413.	3.1	261
8	Neurotoxic effects of TDP-43 overexpression in C. elegans. Human Molecular Genetics, 2010, 19, 3206-3218.	2.9	205
9	Interaction of intracellular amyloid peptide with chaperone proteins. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9439-9444.	7.1	192
10	Utility of an improved model of amyloid-beta (Aβ1-42) toxicity in Caenorhabditis elegans for drug screening for Alzheimer's disease. Molecular Neurodegeneration, 2012, 7, 57.	10.8	188
11	C. elegans models of age-associated neurodegenerative diseases: Lessons from transgenic worm models of Alzheimer's disease. Experimental Gerontology, 2006, 41, 1007-1013.	2.8	181
12	Heterochromatin anomalies and double-stranded RNA accumulation underlie <i>C9orf72</i> poly(PR) toxicity. Science, 2019, 363, .	12.6	181
13	Direct observation of stress response in Caenorhabditis elegans using a reporter transgene. Cell Stress and Chaperones, 1999, 4, 235.	2.9	178
14	A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radical Biology and Medicine, 2003, 34, 1405-1415.	2.9	162
15	Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiology of Aging, 2001, 22, 217-226.	3.1	147
16	In Vivo Aggregation of βâ€Amyloid Peptide Variants. Journal of Neurochemistry, 1998, 71, 1616-1625.	3.9	146
17	Suppression of in Vivo β-Amyloid Peptide Toxicity by Overexpression of the HSP-16.2 Small Chaperone Protein. Journal of Biological Chemistry, 2008, 283, 784-791.	3.4	133
18	Decreased Insulin-Receptor Signaling Promotes the Autophagic Degradation of β-Amyloid Peptide in <i>C. elegans</i> . Autophagy, 2007, 3, 569-580.	9.1	125

CHRISTOPHER D LINK

#	Article	IF	CITATIONS
19	Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. BMC Neuroscience, 2005, 6, 54.	1.9	123
20	Expression of the small heatâ€shock protein Hspâ€16â€2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB Journal, 2003, 17, 2305-2307.	0.5	120
21	α-Sheet secondary structure in amyloid β-peptide drives aggregation and toxicity in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8895-8900.	7.1	118
22	Spt4 selectively regulates the expression of <i>C9orf72</i> sense and antisense mutant transcripts. Science, 2016, 353, 708-712.	12.6	116
23	Insulin-like Signaling Determines Survival during Stress via Posttranscriptional Mechanisms in C. elegans. Cell Metabolism, 2010, 12, 260-272.	16.2	113
24	Genetic Mechanisms of Coffee Extract Protection in a <i>Caenorhabditis elegans</i> Model of β-Amyloid Peptide Toxicity. Genetics, 2010, 186, 857-866.	2.9	106
25	Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Human Molecular Genetics, 2017, 26, 3421-3431.	2.9	101
26	Transgenic invertebrate models of age-associated neurodegenerative diseases. Mechanisms of Ageing and Development, 2001, 122, 1639-1649.	4.6	97
27	Alzheimer's disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for β-amyloid peptide-induced toxicity. Drug Discovery Today: Technologies, 2013, 10, e115-e119.	4.0	95
28	Behavioral Phenotyping of a Transgenic Caenorhabditis Elegans Expressing Neuronal Amyloid-β. Journal of Alzheimer's Disease, 2010, 19, 681-690.	2.6	92
29	Invertebrate models of Alzheimer's disease. Genes, Brain and Behavior, 2005, 4, 147-156.	2.2	89
30	Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human Aβ(1–42): Implications for Alzheimer's disease. Neurobiology of Aging, 2006, 27, 1239-1249.	3.1	89
31	The gut microbiome–derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. GeroScience, 2021, 43, 377-394.	4.6	85
32	Reporter Transgenes for Study of Oxidant Stress in Caenorhabditis elegans. Methods in Enzymology, 2002, 353, 497-505.	1.0	82
33	Conversion of Green Fluorescent Protein into a Toxic, Aggregation-prone Protein by C-terminal Addition of a Short Peptide. Journal of Biological Chemistry, 2006, 281, 1808-1816.	3.4	72
34	Compensatory regulation among ER chaperones in C. elegans. FEBS Letters, 2005, 579, 3063-3068.	2.8	71
35	A pilot proteomic study of amyloid precursor interactors in Alzheimer's disease. Annals of Neurology, 2005, 58, 277-289.	5.3	62
36	What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases?. Molecular Neurodegeneration, 2009, 4, 38.	10.8	62

Christopher D Link

#	Article	IF	CITATIONS
37	<scp>TDP</scp> â€1, the <i><scp>C</scp>aenorhabditis elegans</i> ortholog of <scp>TDP</scp> â€43, limits the accumulation of doubleâ€stranded <scp>RNA</scp> . EMBO Journal, 2014, 33, 2947-2966.	7.8	62
38	Assaying β-amyloid Toxicity using a Transgenic C. elegans Model. Journal of Visualized Experiments, 2010, , .	0.3	57
39	AIP-1 ameliorates β-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer's disease model. Human Molecular Genetics, 2009, 18, 2739-2747.	2.9	56
40	Lifeâ€span extension by dietary restriction is mediated by NLPâ€7 signaling and coelomocyte endocytosis in <i>C. elegans</i> . FASEB Journal, 2010, 24, 383-392.	0.5	52
41	DLK-1, SEK-3 and PMK-3 Are Required for the Life Extension Induced by Mitochondrial Bioenergetic Disruption in C. elegans. PLoS Genetics, 2016, 12, e1006133.	3.5	52
42	A glycine zipper motif mediates the formation of toxic β-amyloid oligomers in vitro and in vivo. Molecular Neurodegeneration, 2011, 6, 61.	10.8	37
43	TDP-43 knockdown causes innate immune activation via protein kinase R in astrocytes. Neurobiology of Disease, 2019, 132, 104514.	4.4	37
44	In vivo induction of membrane damage by β-amyloid peptide oligomers. Acta Neuropathologica Communications, 2018, 6, 131.	5.2	31
45	Is There a Brain Microbiome?. Neuroscience Insights, 2021, 16, 263310552110187.	1.6	31
46	Transcriptome analysis of genetically matched human induced pluripotent stem cells disomic or trisomic for chromosome 21. PLoS ONE, 2018, 13, e0194581.	2.5	31
47	Loss of glutathione redox homeostasis impairs proteostasis by inhibiting autophagy-dependent protein degradation. Cell Death and Differentiation, 2019, 26, 1545-1565.	11.2	30
48	Amyloid beta acts synergistically as a pro-inflammatory cytokine. Neurobiology of Disease, 2021, 159, 105493.	4.4	29
49	In Vitro and in vivo Protein Oxidation Induced by Alzheimer's Disease Amyloid beta-Peptide (1-42). Annals of the New York Academy of Sciences, 1999, 893, 265-268.	3.8	24
50	Identifying AÎ ² -specific pathogenic mechanisms using a nematode model of Alzheimer's disease. Neurobiology of Aging, 2015, 36, 857-866.	3.1	22
51	A semi-automated motion-tracking analysis of locomotion speed in the C. elegans transgenics overexpressing beta-amyloid in neurons. Frontiers in Genetics, 2014, 5, 202.	2.3	19
52	Neurodegeneration, Heterochromatin, and Double-Stranded RNA. Journal of Experimental Neuroscience, 2019, 13, 117906951983069.	2.3	17
53	The <i>Caenorhabditis elegans</i> Ortholog of TDP-43 Regulates the Chromatin Localization of the Heterochromatin Protein 1 Homolog HPL-2. Molecular and Cellular Biology, 2018, 38, .	2.3	14
54	Heat shock in C. elegans induces downstream of gene transcription and accumulation of double-stranded RNA. PLoS ONE, 2019, 14, e0206715.	2.5	14

CHRISTOPHER D LINK

#	Article	IF	CITATIONS
55	Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin. Scientific Reports, 2016, 6, 37346.	3.3	12
56	Studying polyglutamine aggregation in <i>Caenorhabditis elegans</i> using an analytical ultracentrifuge equipped with fluorescence detection. Protein Science, 2016, 25, 605-617.	7.6	10
57	The β amyloid peptide can act as a modular aggregation domain. Neurobiology of Disease, 2008, 32, 420-425.	4.4	8
58	Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in <i>Drosophila melanogaster</i> and <i>Caenorhabditis elegans</i> . Biochemistry, 2017, 56, 4676-4688.	2.5	4
59	Application of a bioinformatic pipeline to RNA-seq data identifies novel virus-like sequence in human blood. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	4
60	Corrigendum to "Compensatory regulation among ER chaperones in <i>C. elegans</i> ―[FEBS Lett. 579 (2005) 3063–3068]. FEBS Letters, 2007, 581, 5952-5952.	2.8	2
61	Cell Death by Glutamine Repeats?. Science, 2012, 335, 926-927.	12.6	1
62	F1-01-01: Coffee protects against in vivo Abeta toxicity via activation of the skn-1 (Nrf2) detoxification pathway. , 2010, 6, S60-S61.		0