Juan Carlos F RodrÃ-guez-Reyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8268686/publications.pdf

Version: 2024-02-01

Juan Carlos F

#	Article	IF	CITATIONS
1	The Reaction of Alkynes with Model Gold Catalysts: Generation of Acetylides, Self-coupling and Surface Decomposition. Catalysis Letters, 2022, 152, 3066-3075.	1.4	1
2	The reaction of thiols on a model gold catalyst leads to the formation of thiolates capable of self-coupling and of displacing carboxylic acids. Surface Science, 2022, 722, 122079.	0.8	1
3	Surface processes at a polymetallic (Mn-Fe-Pb) sulfide subject to cyanide leaching under sonication conditions and with an alkaline pretreatment: Understanding differences in silver extraction with X-ray photoelectron spectroscopy (XPS). Hydrometallurgy, 2021, 200, 105544.	1.8	11
4	Reutilization of pyrite-rich alkaline leaching tailings as sorbent must consider the interplay of sorption and desorption. Minerals Engineering, 2021, 170, 107019.	1.8	2
5	A review on the negative impact of different elements during cyanidation of gold and silver from refractory ores and strategies to optimize the leaching process. Minerals Engineering, 2021, 173, 107194.	1.8	18
6	Leaching of a pyrite-based ore containing copper using sulfuric acid and hydrogen peroxide. International Journal of Industrial Chemistry, 2020, 11, 195-201.	3.1	6
7	Acidic pretreatment of a copper-silver ore and its beneficial effect on cyanide leaching. Minerals Engineering, 2020, 149, 106233.	1.8	10
8	Enhanced antimicrobial activity of silver nanoparticles conjugated with synthetic peptide by click chemistry. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	17
9	Atomistic Simulations of the Reactivity of Acanthite Facets toward Cyanidation. Journal of Physical Chemistry C, 2019, 123, 11888-11898.	1.5	2
10	Synthesis of Highly Concentrated Suspensions of Silver Nanoparticles by Two Versions of the Chemical Reduction Method. Methods and Protocols, 2019, 2, 3.	0.9	25
11	Green chemistry in mineral processing: chemical and physical methods to enhance the leaching of silver and the efficiency in cyanide consumption. Pure and Applied Chemistry, 2018, 90, 1109-1120.	0.9	5
12	Identification of Surface Processes in Individual Minerals of a Complex Ore through the Analysis of Polished Sections Using Polarization Microscopy and X-ray Photoelectron Spectroscopy (XPS). Minerals (Basel, Switzerland), 2018, 8, 427.	0.8	5
13	Selective Activation of Methyl C–H Bonds of Toluene by Oxygen on Metallic Gold. Catalysis Letters, 2018, 148, 1985-1989.	1.4	5
14	Noncovalent Bonding Controls Selectivity in Heterogeneous Catalysis: Coupling Reactions on Gold. Journal of the American Chemical Society, 2016, 138, 15243-15250.	6.6	43
15	Interpretation of temperature-programmed desorption data with multivariate curve resolution: Distinguishing sample and background desorption mathematically. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, 061406.	0.9	1
16	Switching Selectivity in Oxidation Reactions on Gold: The Mechanism of C–C vs C–H Bond Activation in the Acetate Intermediate on Au(111). ACS Catalysis, 2014, 4, 3281-3288.	5.5	19
17	van der Waals Interactions Determine Selectivity in Catalysis by Metallic Gold. Journal of the American Chemical Society, 2014, 136, 13333-13340.	6.6	63
18	Tuning the Stability of Surface Intermediates Using Adsorbed Oxygen: Acetate on Au(111). Journal of Physical Chemistry Letters, 2014, 5, 1126-1130.	2.1	19

JUAN CARLOS F

#	Article	IF	CITATIONS
19	Competing reactions during metalorganic deposition: Ligand-exchange versus direct reaction with the substrate surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 021401.	0.9	23
20	Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol. Surface Science, 2012, 606, 1129-1134.	0.8	40
21	Simulating the Reactivity of a Disordered Surface of the TiCN Thin Film. Journal of Physical Chemistry C, 2011, 115, 15432-15439.	1.5	2
22	Tuning the reactivity of semiconductor surfaces by functionalization with amines of different basicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 956-960.	3.3	51
23	Qualitative and quantitative analysis of complex temperature-programmed desorption data by multivariate curve resolution. Surface Science, 2010, 604, 2043-2054.	0.8	7
24	Reversible Tuning of the Surface Chemical Reactivity of Titanium Nitride and Nitrideâ^'Carbide Diffusion Barrier Thin Films. Chemistry of Materials, 2009, 21, 5163-5169.	3.2	25
25	Chemisorption of Tetrakis(dimethylamido)titanium on Si(100)-2 × 1: Câ`'H and Câ`'N Bond Reactivity Leading to Low-Temperature Decomposition Pathways. Journal of Physical Chemistry C, 2008, 112, 9695-9705.	1.5	19
26	Role of surface strain in the subsurface migration of adsorbates on silicon. Physical Review B, 2008, 78, .	1.1	13
27	Mechanisms of adsorption and decomposition of metal alkylamide precursors for ultrathin film growth. Journal of Applied Physics, 2008, 104, .	1.1	30
28	Cooperative nitrogen insertion processes: Thermal transformation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mi mathvariant="normal">N <mml:msub> <mml:mi mathvariant="normal">N <mml:msub> <mml:mi c::/loop===================================</mml:mi </mml:msub></mml:mi </mml:msub></mml:mi </mml:mrow></mml:math 	1.1	32
29	SI(100) surface. Physical Review B, 2007, 76, . Surface Transamination Reaction for Tetrakis(dimethylamido)titanium with NH <i>_X</i> -Terminated Si(100) Surfaces. Journal of Physical Chemistry C, 2007, 111, 16498-16505.	1.5	38
30	Chemistry of Diffusion Barrier Film Formation:  Adsorption and Dissociation of Tetrakis(dimethylamino)titanium on Si(100)-2 × 1. Journal of Physical Chemistry C, 2007, 111, 4800-4808.	1.5	46
31	Chemistry of Organometallic Compounds on Silicon: The First Step in Film Growth. Chemistry - A European Journal, 2007, 13, 9164-9176.	1.7	26
32	A Value-Chain Model for Research in Heritage Conservation: The Research Center for Heritage Conservation in Lima, Peru. Studies in Conservation, 0, , 1-10.	0.6	0