Rachel Mandelbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8268532/publications.pdf

Version: 2024-02-01

160 papers 27,413 citations

69 h-index 161 g-index

168 all docs

168 docs citations

168 times ranked 10972 citing authors

#	Article	IF	CITATIONS
1	THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2009, 182, 543-558.	3.0	4,201
2	LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophysical Journal, 2019, 873, 111.	1.6	1,744
3	SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS. Astronomical Journal, 2011, 142, 72.	1.9	1,700
4	THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III. Astronomical Journal, 2013, 145, 10.	1.9	1,571
5	The Sixth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2008, 175, 297-313.	3.0	1,202
6	THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2011, 193, 29.	3.0	1,166
7	THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. Astrophysical Journal, Supplement Series, 2012, 203, 21.	3.0	1,158
8	The Fourth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2006, 162, 38-48.	3.0	948
9	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3435-3467.	1.6	738
10	The Fifth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2007, 172, 634-644.	3.0	615
11	Galaxy halo masses and satellite fractions from galaxy-galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies. Monthly Notices of the Royal Astronomical Society, 2006, 368, 715-731.	1.6	581
12	The Hyper Suprime-Cam SSP Survey: Overview and survey design. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	566
13	Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	413
14	The Hyper Suprime-Cam software pipeline. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	346
15	First data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	327
16	The Shear Testing Programme 2: Factors affecting high-precision weak-lensing analyses. Monthly Notices of the Royal Astronomical Society, 2007, 376, 13-38.	1.6	321
17	GalSim: The modular galaxy image simulation toolkit. Astronomy and Computing, 2015, 10, 121-150.	0.8	256
18	Confirmation of general relativity on large scales from weak lensing and galaxy velocities. Nature, 2010, 464, 256-258.	13.7	254

#	Article	IF	CITATIONS
19	Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing. Monthly Notices of the Royal Astronomical Society, 2005, 361, 1287-1322.	1.6	253
20	Cosmological parameter constraints from galaxy–galaxy lensing and galaxy clustering with the SDSS DR7. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1544-1575.	1.6	241
21	Detection of large-scale intrinsic ellipticity-density correlation from the Sloan Digital Sky Survey and implications for weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 2006, 367, 611-626.	1.6	217
22	Weak Lensing for Precision Cosmology. Annual Review of Astronomy and Astrophysics, 2018, 56, 393-433.	8.1	213
23	Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 0, 381, 1197-1218.	1.6	210
24	Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample. Astronomy and Astrophysics, 2011, 527, A26.	2.1	207
25	Density profiles of galaxy groups and clusters from SDSS galaxy-galaxy weak lensing. Monthly Notices of the Royal Astronomical Society, 2006, 372, 758-776.	1.6	196
26	Galaxy Alignments: An Overview. Space Science Reviews, 2015, 193, 1-65.	3.7	188
27	A halo mass—concentration relation from weak lensing. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 006.	1.9	176
28	The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	174
29	THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: THE QUASAR LUMINOSITY FUNCTION FROM DATA RELEASE NINE. Astrophysical Journal, 2013, 773, 14.	1.6	170
30	Cosmological constraints from cosmic shear two-point correlation functions with HSC survey first-year data. Publication of the Astronomical Society of Japan, 2020, 72, .	1.0	169
31	Lensing is low: cosmology, galaxy formation or new physics?. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3024-3047.	1.6	150
32	Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2195-2216.	1.6	148
33	Mapping stellar content to dark matter haloes using galaxy clustering and galaxy–galaxy lensing in the SDSS DR7. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1161-1191.	1.6	145
34	Galaxy-galaxy weak lensing in the Sloan Digital Sky Survey: intrinsic alignments and shear calibration errors. Monthly Notices of the Royal Astronomical Society, 2004, 353, 529-549.	1.6	139
35	SDSS galaxy bias from halo mass-bias relation and its cosmological implications. Physical Review D, 2005, 71, .	1.6	135
36	DETECTION OF THE SPLASHBACK RADIUS AND HALO ASSEMBLY BIAS OF MASSIVE GALAXY CLUSTERS. Astrophysical Journal, 2016, 825, 39.	1.6	135

#	Article	IF	CITATIONS
37	Strong bimodality in the host halo mass of central galaxies from galaxy–galaxy lensing. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3200-3218.	1.6	128
38	Weak lensing measurement of the mass–richness relation of SDSS redMaPPer clusters. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3103-3118.	1.6	126
39	THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK. Astrophysical Journal, Supplement Series, 2014, 212, 5.	3.0	125
40	THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. II. ASTROPHYSICAL AND COSMOLOGICAL CONSTRAINTS. Astrophysical Journal, 2015, 806, 2.	1.6	124
41	CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3895-3906.	1.6	124
42	Precision photometric redshift calibration for galaxy–galaxy weak lensing. Monthly Notices of the Royal Astronomical Society, 2008, 386, 781-806.	1.6	121
43	The WiggleZ Dark Energy Survey: direct constraints on blue galaxy intrinsic alignments at intermediate redshifts. Monthly Notices of the Royal Astronomical Society, 2011, 410, 844-859.	1.6	120
44	GREAT3 results – I. Systematic errors in shear estimation and the impact of real galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2963-3007.	1.6	119
45	Galaxy Alignments: Observations and Impact on Cosmology. Space Science Reviews, 2015, 193, 139-211.	3.7	119
46	Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy-galaxy lensing. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2610-2640.	1.6	118
47	Galaxy Alignments: Theory, Modelling & Simulations. Space Science Reviews, 2015, 193, 67-136.	3.7	110
48	Galaxy-galaxy lensing: dissipationless simulations versus the halo model. Monthly Notices of the Royal Astronomical Society, 2005, 362, 1451-1462.	1.6	106
49	Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering. Physical Review D, 2010, 81, .	1.6	105
50	CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. I. MEASUREMENTS. Astrophysical Journal, 2009, 703, 2217-2231.	1.6	104
51	Growth of cosmic structure: Probing dark energy beyond expansion. Astroparticle Physics, 2015, 63, 23-41.	1.9	103
52	Ellipticity of dark matter haloes with galaxy-galaxy weak lensing. Monthly Notices of the Royal Astronomical Society, 2006, 370, 1008-1024.	1.6	102
53	Weak lensing shear calibration with simulations of the HSC survey. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3170-3195.	1.6	102
54	Cluster density profiles as a test of modified gravity. Physical Review D, 2012, 85, .	1.6	100

#	Article	IF	CITATIONS
55	Mapping stellar content to dark matter haloes – II. Halo mass is the main driver of galaxy quenching. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4360-4383.	1.6	100
56	Evidence of Halo Assembly Bias in Massive Clusters. Physical Review Letters, 2016, 116, 041301.	2.9	99
57	Handbook for the GREAT08 Challenge: An image analysis competition for cosmological lensing. Annals of Applied Statistics, 2009, 3, .	0.5	93
58	Calibrated Tully-Fisher relations for improved estimates of disc rotation velocities. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2347-2386.	1.6	91
59	ON DETECTING HALO ASSEMBLY BIAS WITH GALAXY POPULATIONS. Astrophysical Journal, 2016, 819, 119.	1.6	91
60	Halo masses for optically selected and for radio-loud AGN from clustering and galaxy-galaxy lensing. Monthly Notices of the Royal Astronomical Society, 2009, 393, 377-392.	1.6	89
61	THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. I. MEASUREMENTS. Astrophysical Journal, 2015, 806, 1.	1.6	87
62	Galaxy shapes and intrinsic alignments in the MassiveBlack-II simulation. Monthly Notices of the Royal Astronomical Society, 2014, 441, 470-485.	1.6	82
63	Galaxy–galaxy lensing estimators and their covariance properties. Monthly Notices of the Royal Astronomical Society, 2017, 471, 3827-3844.	1.6	82
64	On the level of cluster assembly bias in SDSS. Monthly Notices of the Royal Astronomical Society, 2017, 470, 551-560.	1.6	82
65	Characterization and photometric performance of the Hyper Suprime-Cam Software Pipeline. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	80
66	WEIGHING "EL GORDO―WITH A PRECISION SCALE: <i>HUBBLE SPACE TELESCOPE</i> WEAK-LENSING ANALYSIS OF THE MERGING GALAXY CLUSTER ACT-CL J0102–4915 AT <i>z</i> = 0.87. Astrophysical Journal, 2014, 785, 20.	1.6	77
67	Precision simulation of ground-based lensing data using observations from space. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1518-1540.	1.6	76
68	Galaxy And Mass Assembly (GAMA): the halo mass of galaxy groups from maximum-likelihood weak lensing. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1356-1379.	1.6	72
69	Detecting effects of filaments on galaxy properties in the Sloan Digital Sky Survey III. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1880-1893.	1.6	72
70	Weak-lensing Mass Calibration of ACTPol Sunyaev–Zel'dovich Clusters with the Hyper Suprime-Cam Survey. Astrophysical Journal, 2019, 875, 63.	1.6	72
71	Modelling baryonic physics in future weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1652-1678.	1.6	71
72	Separating intrinsic alignment and galaxy-galaxy lensing. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 041-041.	1.9	68

#	Article	IF	CITATIONS
73	CosmoDC2: A Synthetic Sky Catalog for Dark Energy Science with LSST. Astrophysical Journal, Supplement Series, 2019, 245, 26.	3.0	67
74	Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3522-3544.	1.6	66
75	Spectroscopic needs for imaging dark energy experiments. Astroparticle Physics, 2015, 63, 81-100.	1.9	66
76	The morphology of galaxies in the Baryon Oscillation Spectroscopic Survey. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1055-1070.	1.6	61
77	Testing adiabatic contraction with Sloan Digital Sky Survey elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 2010, 408, 1463-1475.	1.6	56
78	Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2345-2370.	1.6	56
79	Luminous red galaxies in clusters: central occupation, spatial distributions and miscentring. Monthly Notices of the Royal Astronomical Society, 2015, 452, 998-1013.	1.6	56
80	Cross-correlating <i>Planck</i> CMB lensing with SDSS: lensingâ€"lensing and galaxyâ€"lensing cross-correlations. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2120-2138.	1.6	55
81	The mass–richness relation of optically selected clusters from weak gravitational lensing and abundance with Subaru HSC first-year data. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	54
82	Precision cosmology from the Lyman alpha forest: power spectrum and bispectrum. Monthly Notices of the Royal Astronomical Society, 2003, 344, 776-788.	1.6	52
83	Galaxy shapes and alignments in the MassiveBlack-II hydrodynamic and dark matter-only simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 469-482.	1.6	52
84	Seeing in the dark – II. Cosmic shear in the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1322-1344.	1.6	49
85	PHOTOMETRIC REDSHIFT PROBABILITY DISTRIBUTIONS FOR GALAXIES IN THE SDSS DR8. Astrophysical Journal, Supplement Series, 2012, 201, 32.	3.0	48
86	Modelling projection effects in optically selected cluster catalogues. Monthly Notices of the Royal Astronomical Society, 2019, 482, 490-505.	1.6	48
87	Results of the GREATO8 Challengea~: an image analysis competition for cosmological lensing. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	1.6	47
88	Intrinsic alignments of BOSS LOWZ galaxies $\hat{a} \in \mathbb{N}$ II. Impact of shape measurement methods. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2301-2317.	1.6	46
89	Scientific Synergy between LSST and <i>Euclid</i> . Astrophysical Journal, Supplement Series, 2017, 233, 21.	3.0	44
90	Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements. Monthly Notices of the Royal Astronomical Society, 2008, 390, 1157-1169.	1.6	42

#	Article	IF	CITATIONS
91	A HIGHLY ELONGATED PROMINENT LENS AT $\langle i \rangle_z \langle j \rangle = 0.87$: FIRST STRONG-LENSING ANALYSIS OF EL GORDO. Astrophysical Journal Letters, 2013, 770, L15.	3.0	42
92	Intrinsic alignments of disc and elliptical galaxies in the MassiveBlack-II and Illustris simulations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2668-2680.	1.6	42
93	Two- and three-dimensional wide-field weak lensing mass maps from the Hyper Suprime-Cam Subaru Strategic Program S16A data. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	42
94	Tomographic galaxy clustering with the Subaru Hyper Suprime-Cam first year public data release. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 044-044.	1.9	41
95	Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design. Astrophysical Journal, Supplement Series, 2022, 258, 1.	3.0	40
96	A unified analysis of four cosmic shear surveys. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3696-3717.	1.6	39
97	Galaxy density profiles and shapes - II. Selection biases in strong lensing surveys. Monthly Notices of the Royal Astronomical Society, 2009, 398, 635-657.	1.6	37
98	Intrinsic alignments in redMaPPer clusters $\hat{a} \in \mathbb{C}$ I. Central galaxy alignments and angular segregation of satellites. Monthly Notices of the Royal Astronomical Society, 2016, 463, 222-244.	1.6	37
99	Cosmological constraints from galaxy–lensing cross-correlations using BOSS galaxies with SDSS and CMB lensing. Monthly Notices of the Royal Astronomical Society, 2020, 491, 51-68.	1.6	37
100	Gravitational Lensing Accuracy Testing 2010 (GREAT10) Challenge Handbook. Annals of Applied Statistics, 2011, 5, .	0.5	36
101	Galaxy density profiles and shapes - I. Simulation pipeline for lensing by realistic galaxy models. Monthly Notices of the Royal Astronomical Society, 2009, 398, 607-634.	1.6	35
102	Galaxy And Mass Assembly (GAMA): galaxy radial alignments in GAMA groups. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2727-2738.	1.6	35
103	Investigating galaxy-filament alignments in hydrodynamic simulations using density ridges. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3341-3350.	1.6	35
104	Source selection for cluster weak lensing measurements in the Hyper Suprime-Cam survey. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	35
105	Intrinsic alignments of group and cluster galaxies in photometric surveys. Monthly Notices of the Royal Astronomical Society, 2014, 445, 726-748.	1.6	34
106	A weak gravitational lensing recalibration of the scaling relations linking the gas properties of dark haloes to their mass. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2301-2320.	1.6	33
107	Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	32
108	Testing gravity on large scales by combining weak lensing with galaxy clustering using CFHTLenS and BOSS CMASS. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4853-4865.	1.6	32

#	Article	IF	CITATIONS
109	Mapping stellar content to dark matter haloes $\hat{a} \in \mathbb{N}$ III. Environmental dependence and conformity of galaxy colours. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1637-1653.	1.6	32
110	Cosmic web dependence of galaxy clustering and quenching in SDSS. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4501-4517.	1.6	32
111	The LSST DESC DC2 Simulated Sky Survey. Astrophysical Journal, Supplement Series, 2021, 253, 31.	3.0	32
112	The three-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey. Publication of the Astronomical Society of Japan, 2022, 74, 421-459.	1.0	31
113	Detection of intrinsic cluster alignments to 100â€fhâ^'1â€fMpc in the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2012, 423, 856-861.	1.6	30
114	A detection of the environmental dependence of the sizes and stellar haloes of massive central galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 521-537.	1.6	27
115	Detecting galaxy–filament alignments in the Sloan Digital Sky Survey III. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2492-2504.	1.6	27
116	Probing gravity with a joint analysis of galaxy and CMB lensing and SDSS spectroscopy. Monthly Notices of the Royal Astronomical Society, 2019, 482, 785-806.	1.6	27
117	Dark energy survey year 1 results: Constraining baryonic physics in the Universe. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6010-6031.	1.6	27
118	Cosmology with the <i>Roman Space Telescope</i> : synergies with the Rubin Observatory Legacy Survey of Space and Time. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1514-1527.	1.6	24
119	First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. II. Faint end color–magnitude diagrams and radial profiles of red and blue galaxies at 0.1Â<Â <i>z</i> Â<Â1.1. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	23
120	Advances in constraining intrinsic alignment models with hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 637-664.	1.6	23
121	Intrinsic alignment in redMaPPer clusters – II. Radial alignment of satellites towards cluster centres. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4772-4794.	1.6	22
122	A robust lower limit on the amplitude of matter fluctuations in the universe from cluster abundance and weak lensing. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 024-024.	1.9	20
123	Background sky obscuration by cluster galaxies as a source of systematic error for weak lensing. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1259-1269.	1.6	20
124	The Impact of Interpixel Capacitance in CMOS Detectors on PSF Shapes and Implications for WFIRST. Publications of the Astronomical Society of the Pacific, 2016, 128, 095001.	1.0	20
125	Galaxy–Galaxy lensing in HSC: Validation tests and the impact of heterogeneous spectroscopic training sets. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5658-5677.	1.6	20
126	Deep generative models for galaxy image simulations. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5543-5555.	1.6	20

#	Article	IF	CITATIONS
127	Subaru weak lensing measurement of a $z=0.81$ cluster discovered by the Atacama Cosmology Telescope Surveyã \dots Monthly Notices of the Royal Astronomical Society, 2013, 429, 3627-3644.	1.6	19
128	Non-Gaussianity in the weak lensing correlation function likelihood – implications for cosmological parameter biases. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2977-2993.	1.6	19
129	A synthetic <i>Roman Space Telescope </i> High-Latitude Imaging Survey: simulation suite and the impact of wavefront errors on weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2044-2070.	1.6	19
130	Detection of spatial correlations of Fundamental Plane residuals, and cosmological implications. Monthly Notices of the Royal Astronomical Society, 2015, 454, 478-488.	1.6	18
131	DESCQA: An Automated Validation Framework for Synthetic Sky Catalogs. Astrophysical Journal, Supplement Series, 2018, 234, 36.	3.0	18
132	The evolution of galaxy intrinsic alignments in the <tt>MassiveBlackII</tt> universe. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4116-4130.	1.6	17
133	The Effect of Detector Nonlinearity on <i>WFIRST</i> PSF Profiles for Weak Gravitational Lensing Measurements. Publications of the Astronomical Society of the Pacific, 2016, 128, 104001.	1.0	15
134	Precision cluster mass determination from weak lensing. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	14
135	Weak lensing calibration of mass bias in the REFLEX+BCS X-ray galaxy cluster catalogue. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3663-3673.	1.6	14
136	HSC Year 1 cosmology results with the minimal bias method: <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>HSC</mml:mi><mml:mo stretchy="false">×</mml:mo><mml:mi>BOSS</mml:mi><mml:mrow></mml:mrow></mml:math>	1.6	14
137	galaxy-galaxy weak lensing and BOSS galaxy clustering. Physical Review D, 2022, 105, . Seeing in the dark – I. Multi-epoch alchemy. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1296-1321.	1.6	13
138	Testing redMaPPer centring probabilities using galaxy clustering and galaxy–galaxy lensing. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2689-2697.	1.6	13
139	The Impact of Observing Strategy on Cosmological Constraints with LSST. Astrophysical Journal, Supplement Series, 2022, 259, 58.	3.0	13
140	The LSST DESC data challenge 1: generation and analysis of synthetic images for next-generation surveys. Monthly Notices of the Royal Astronomical Society, 2020, 497, 210-228.	1.6	12
141	Instrumental systematics and weak gravitational lensing. Journal of Instrumentation, 2015, 10, C05017-C05017.	0.5	10
142	The impact of cosmic variance on simulating weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3597-3612.	1.6	10
143	Downsizing of star formation measured from the clustered infrared background correlated with quasars. Monthly Notices of the Royal Astronomical Society, 2018, 480, 149-181.	1.6	10
144	Measuring the scale dependence of intrinsic alignments using multiple shear estimates. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1412-1426.	1.6	9

#	Article	IF	CITATIONS
145	Estimating redshift distributions using hierarchical logistic Gaussian processes. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4768-4782.	1.6	9
146	The impact of correlated noise on galaxy shape estimation for weak lensing. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3522-3534.	1.6	7
147	Multiwavelength study of X-ray luminous clusters in the Hyper Suprime-Cam Subaru Strategic Program S16A field. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	7
148	Intrinsic alignments of bulges and discs. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1021-1033.	1.6	7
149	Galaxy Halo Masses from Weak Gravitational Lensing. Proceedings of the International Astronomical Union, 2014, 10, 86-95.	0.0	6
150	Calibrating long-period variables as standard candles with machine learning. Monthly Notices of the Royal Astronomical Society, 2019, 484, 409-421.	1.6	6
151	Testing the impact of satellite anisotropy on large- and small-scale intrinsic alignments using hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5330-5350.	1.6	6
152	A Composite Likelihood Approach for Inference under Photometric Redshift Uncertainty. Monthly Notices of the Royal Astronomical Society, 0 , , .	1.6	6
153	Impact of point spread function higher moments error on weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1978-1993.	1.6	6
154	Validation of PSF models for <i>HST</i> and other space-based observations. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5017-5038.	1.6	5
155	Optimizing LSST observing strategy for weak lensing systematics. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1140-1153.	1.6	4
156	Probabilistic model for dynamic galaxy decomposition. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1764-1778.	1.6	4
157	Large-scale structure and the intrinsic alignment of galaxies. Proceedings of the International Astronomical Union, 2014, 11, 452-455.	0.0	2
158	The GREAT3 challenge. Journal of Instrumentation, 2014, 9, C04031-C04031.	0.5	2
159	The impact of light polarization effects on weak lensing systematics. Monthly Notices of the Royal Astronomical Society, 2020, 496, 532-539.	1.6	2
160	Impact of image persistence in the <i>Roman Space Telescope</i> High-Latitude Survey. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3312-3318.	1.6	2