
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/826850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Modified Cross-Linking Analysis of cDNAs (CRAC) Protocol for Detecting RNA–Protein Interactions and Transcription at Single-Nucleotide Resolution. Methods in Molecular Biology, 2022, 2477, 35-55.	0.9	1
2	An integrated model for termination of RNA polymerase III transcription. Science Advances, 2022, 8, .	10.3	14
3	Sen1 is a key regulator of transcription-driven conflicts. Molecular Cell, 2022, 82, 2952-2966.e6.	9.7	14
4	Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configuration. RNA Biology, 2021, 18, 1310-1323.	3.1	12
5	Data from crosslinking and analysis of cDNAs (CRAC) of Nab3 in yeast cells expressing a circular ncRNA decoy. Data in Brief, 2021, 35, 106951.	1.0	1
6	Degradation of Non-coding RNAs Promotes Recycling of Termination Factors at Sites of Transcription. Cell Reports, 2020, 32, 107942.	6.4	19
7	Sen1 Is Recruited to Replication Forks via Ctf4 and Mrc1 and Promotes Genome Stability. Cell Reports, 2020, 30, 2094-2105.e9.	6.4	26
8	Termination of nonâ€coding transcription in yeast relies on both an RNA Pol II CTD interaction domain and a CTDâ€mimicking region in Sen1. EMBO Journal, 2020, 39, e101548.	7.8	23
9	Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nature Structural and Molecular Biology, 2019, 26, 744-754.	8.2	93
10	Single-molecule characterization of extrinsic transcription termination by Sen1 helicase. Nature Communications, 2019, 10, 1545.	12.8	13
11	Highâ€resolution transcription maps reveal the widespread impact of roadblock termination in yeast. EMBO Journal, 2018, 37, .	7.8	60
12	General Regulatory Factors Control the Fidelity of Transcription by Restricting Non-coding and Ectopic Initiation. Molecular Cell, 2018, 72, 955-969.e7.	9.7	52
13	Pervasive transcription fine-tunes replication origin activity. ELife, 2018, 7, .	6.0	21
14	Sen1 has unique structural features grafted on the architecture of the Upf1â€like helicase family. EMBO Journal, 2017, 36, 1590-1604.	7.8	45
15	Biochemical characterization of the helicase Sen1 provides new insights into the mechanisms of non-coding transcription termination. Nucleic Acids Research, 2017, 45, 1355-1370.	14.5	52
16	Transcription Termination: Variations on Common Themes. Trends in Genetics, 2016, 32, 508-522.	6.7	94
17	Sleeping Beauty and the Beast (of pervasive transcription). Rna, 2015, 21, 678-679.	3.5	10
18	Crystal structures of the Gon7/Pcc1 and Bud32/Cgi121 complexes provide a model for the complete yeast KEOPS complex. Nucleic Acids Research, 2015, 43, 3358-3372.	14.5	43

#	Article	IF	CITATIONS
19	Transcription termination and the control of the transcriptome: why, where and how to stop. Nature Reviews Molecular Cell Biology, 2015, 16, 190-202.	37.0	246
20	Non-coding transcription by RNA polymerase II in yeast: Hasard or nécessité?. Biochimie, 2015, 117, 28-36.	2.6	21
21	Endless Quarrels at the End of Genes. Molecular Cell, 2015, 60, 192-194.	9.7	10
22	Characterization of the Mechanisms of Transcription Termination by the Helicase Sen1. Methods in Molecular Biology, 2015, 1259, 313-331.	0.9	9
23	Roadblock Termination by Reb1p Restricts Cryptic and Readthrough Transcription. Molecular Cell, 2014, 56, 667-680.	9.7	53
24	Molecular Basis for Coordinating Transcription Termination with Noncoding RNA Degradation. Molecular Cell, 2014, 55, 467-481.	9.7	99
25	A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nature Structural and Molecular Biology, 2013, 20, 884-891.	8.2	102
26	High-Frequency Promoter Firing Links THO Complex Function to Heavy Chromatin Formation. Cell Reports, 2013, 5, 1082-1094.	6.4	14
27	Dealing with Pervasive Transcription. Molecular Cell, 2013, 52, 473-484.	9.7	250
28	RNA quality control in the nucleus: The Angels' share of RNA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 604-611.	1.9	42
29	The Role of Ctk1 Kinase in Termination of Small Non-Coding RNAs. PLoS ONE, 2013, 8, e80495.	2.5	15
30	Ers1 links HP1 to RNAi. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11258-11263.	7.1	27
31	<i>In vivo</i> SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination. EMBO Journal, 2012, 31, 3935-3948.	7.8	67
32	Extensive Degradation of RNA Precursors by the Exosome in Wild-Type Cells. Molecular Cell, 2012, 48, 409-421.	9.7	218
33	Implication of Ccr4-Not complex function in mRNA quality control in Saccharomyces cerevisiae. Rna, 2011, 17, 1788-1794.	3.5	17
34	Nuclear mRNA quality control in yeast is mediated by Nrd1 co-transcriptional recruitment, as revealed by the targeting of Rho-induced aberrant transcripts. Nucleic Acids Research, 2011, 39, 2809-2820.	14.5	27
35	Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs. Nucleic Acids Research, 2011, 39, 6148-6160.	14.5	79
36	Sex matters in the birth of genes. Cell Research, 2010, 20, 499-501.	12.0	0

#	Article	IF	CITATIONS
37	Nuclear Poly(A)-Binding Proteins and Nuclear Degradation: Take the mRNA and Run?. Molecular Cell, 2010, 37, 3-5.	9.7	17
38	Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex. EMBO Journal, 2008, 27, 2340-2351.	7.8	62
39	Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nature Structural and Molecular Biology, 2008, 15, 786-794.	8.2	130
40	mRNA journey to the cytoplasm: attire required. Biology of the Cell, 2008, 100, 327-342.	2.0	30
41	Futile Cycle of Transcription Initiation and Termination Modulates the Response to Nucleotide Shortage in S. cerevisiae. Molecular Cell, 2008, 31, 671-682.	9.7	93
42	THO/Sub2p Functions to Coordinate 3′-End Processing with Gene-Nuclear Pore Association. Cell, 2008, 135, 308-321.	28.9	129
43	Exonucleolysis is required for nuclear mRNA quality control in yeast THO mutants. Rna, 2008, 14, 2305-2313.	3.5	48
44	Binding of an aptamer to the N-terminal fragment of VCAM-1. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6119-6122.	2.2	12
45	Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants. EMBO Journal, 2007, 26, 2317-2326.	7.8	114
46	Transcription Termination and Nuclear Degradation of Cryptic Unstable Transcripts: A Role for the Nrd1-Nab3 Pathway in Genome Surveillance. Molecular Cell, 2006, 23, 853-864.	9.7	209
47	Yeast homolog of a cancer-testis antigen defines a new transcription complex. EMBO Journal, 2006, 25, 3576-3585.	7.8	122
48	An Autocrine Loop Involving Ret and Glial Cell–Derived Neurotrophic Factor Mediates Retinoic Acid–Induced Neuroblastoma Cell Differentiation. Molecular Cancer Research, 2006, 4, 481-488.	3.4	30
49	Neutralizing Aptamers from Whole-Cell SELEX Inhibit the RET Receptor Tyrosine Kinase. PLoS Biology, 2005, 3, e123.	5.6	228
50	A Link between Transcription and mRNP Quality inSaccharomyces cerevisiae. RNA Biology, 2005, 2, 45-48.	3.1	6
51	Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase. Cell, 2005, 121, 725-737.	28.9	764
52	The DECD box Putative ATPase Sub2p Is an Early mRNA Export Factor. Current Biology, 2004, 14, 447.	3.9	1
53	Modulation of Transcription Affects mRNP Quality. Molecular Cell, 2004, 16, 235-244.	9.7	57
54	Early Formation of mRNP. Molecular Cell, 2003, 11, 1129-1138.	9.7	106

#	Article	IF	CITATIONS
55	Localization of nuclear retained mRNAs in Saccharomyces cerevisiae. Rna, 2003, 9, 1049-1057.	3.5	62
56	Interactions between mRNA Export Commitment, 3′-End Quality Control, and Nuclear Degradation. Molecular and Cellular Biology, 2002, 22, 8254-8266.	2.3	223
57	A Role for the Î U Mismatch in the Recognition of the 5′ Splice Site of Yeast Introns by the U1 Small Nuclear Ribonucleoprotein Particle. Journal of Biological Chemistry, 2002, 277, 18173-18181.	3.4	16
58	Nucleic acid aptamers in cancer medicine. FEBS Letters, 2002, 528, 12-16.	2.8	99
59	The DECD box putative ATPase Sub2p is an early mRNA export factor. Current Biology, 2001, 11, 1711-1715.	3.9	142
60	Multiple roles for the yeast SUB2/yUAP56 gene in splicing. Genes and Development, 2001, 15, 36-41.	5.9	111
61	Splicing enhancement in the yeast rp51b intron. Rna, 2000, 6, 352-368.	3.5	7
62	RNA structural patterns and splicing: molecular basis for an RNA-based enhancer. Rna, 1995, 1, 425-36.	3.5	44
63	Splicing of the alternative exons of the chicken, rat, and Xenopus beta tropomyosin transcripts requires class-specific elements. Journal of Biological Chemistry, 1994, 269, 19675-8.	3.4	9
64	Pre-mRNA secondary structure and the regulation of splicing. BioEssays, 1993, 15, 165-169.	2.5	96
65	Intronic sequence with both negative and positive effects on the regulation of alternative transcripts of the chicken β trophmyosin transcripts. Nucleic Acids Research, 1992, 20, 3987-3992.	14.5	41
66	In Vivo Splicing of the β Tropomyosin Pre-mRNA: A Role for Branch Point and Donor Site Competition. Molecular and Cellular Biology, 1992, 12, 3204-3215.	2.3	24
67	Cis regulating elements which control in vivo alternative splicing of the chicken beta tropomyosin primary transcript. Symposia of the Society for Experimental Biology, 1992, 46, 355-62.	0.0	0
68	The chicken gene encoding the $\hat{l}\pm$ isoform of tropomyosin of fast-twitch muscle fibers: organization, expression and identification of the major proteins synthesized. Gene, 1991, 107, 229-240.	2.2	45
69	Tissue-Specific Splicing in Vivo of the Î ² -Tropomyosin Gene: Dependence on an RNA Secondary Structure. Science, 1991, 252, 1842-1845.	12.6	167
70	Exon as well as Intron Sequences Are <i>cis</i> -Regulating Elements for the Mutually Exclusive Alternative Splicing of the β Tropomyosin Gene. Molecular and Cellular Biology, 1990, 10, 5036-5046.	2.3	70
71	In vitro splicing of mutually exclusive exons from the chicken beta-tropomyosin gene: role of the branch point location and very long pyrimidine stretch. EMBO Journal, 1990, 9, 241-9.	7.8	41
72	A nonmuscle tropomyosin is encoded by the smooth/skeletal beta-tropomyosin gene and its RNA is transcribed from an internal promoter. Journal of Biological Chemistry, 1990, 265, 3471-3.	3.4	19

#	Article	IF	CITATIONS
73	Chick α tropomyosin gene contains three sets of mutually exclusive alternatively spliced exons. Nucleic Acids Research, 1989, 17, 5400-5400.	14.5	6
74	Tissue-specific transcriptional control of α- and β-tropomyosins in chicken muscle development. Developmental Biology, 1989, 131, 430-438.	2.0	20
75	A single gene codes for the beta subunits of smooth and skeletal muscle tropomyosin in the chicken. Journal of Biological Chemistry, 1989, 264, 2935-44.	3.4	61