Gavin J Conibeer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8268349/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films, 2006, 511-512, 654-662.	1.8	542
2	Third-generation photovoltaics. Materials Today, 2007, 10, 42-50.	14.2	407
3	Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films, 2008, 516, 6748-6756.	1.8	395
4	Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nature Communications, 2017, 8, 14120.	12.8	330
5	The current status and future prospects of kesterite solar cells: a brief review. Progress in Photovoltaics: Research and Applications, 2016, 24, 879-898.	8.1	316
6	Silicon quantum dot/crystalline silicon solar cells. Nanotechnology, 2008, 19, 245201.	2.6	288
7	Hot carrier solar cells: Principles, materials and design. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2862-2866.	2.7	192
8	Slowing of carrier cooling in hot carrier solar cells. Thin Solid Films, 2008, 516, 6948-6953.	1.8	141
9	Selective energy contacts for hot carrier solar cells. Thin Solid Films, 2008, 516, 6968-6973.	1.8	133
10	n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 684-690.	6.2	123
11	Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices. Solar Energy Materials and Solar Cells, 2008, 92, 474-481.	6.2	120
12	Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications. Applied Physics Letters, 2009, 95, .	3.3	117
13	Progress on hot carrier cells. Solar Energy Materials and Solar Cells, 2009, 93, 713-719.	6.2	108
14	Hot carrier solar cells operating under practical conditions. Journal of Applied Physics, 2009, 105, .	2.5	107
15	Silicon Quantum Dots in a Dielectric Matrix for All-Silicon Tandem Solar Cells. Advances in OptoElectronics, 2007, 2007, 1-11.	0.6	101
16	Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride thin films. Journal of Applied Physics, 2008, 104, .	2.5	95
17	Physical properties of very thin SnS films deposited by thermal evaporation. Thin Solid Films, 2011, 520, 837-841.	1.8	90
18	Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals?. Journal of Applied Physics, 2015, 117, .	2.5	88

#	Article	IF	CITATIONS
19	Efficient electron transfer in carbon nanodot–graphene oxide nanocomposites. Journal of Materials Chemistry C, 2014, 2, 2894.	5.5	87
20	Structural characterization of annealed Si1â°'xCx/SiC multilayers targeting formation of Si nanocrystals in a SiC matrix. Journal of Applied Physics, 2008, 103, 083544.	2.5	84
21	Ultrafast electron transfer in the nanocomposite of the graphene oxide–Au nanocluster with graphene oxide as a donor. Journal of Materials Chemistry C, 2014, 2, 3826-3834.	5.5	82
22	Hot carrier solar cell absorber prerequisites and candidate material systems. Solar Energy Materials and Solar Cells, 2015, 135, 124-129.	6.2	76
23	Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix. Thin Solid Films, 2008, 516, 3824-3830.	1.8	75
24	Modelling of hot carrier solar cell absorbers. Solar Energy Materials and Solar Cells, 2010, 94, 1516-1521.	6.2	73
25	Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer. Nano Letters, 2016, 16, 3524-3532.	9.1	73
26	Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. Nano Energy, 2018, 46, 212-219.	16.0	72
27	Morphological Evolution and Singlet Fission in Aqueous Suspensions of TIPS-Pentacene Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 157-165.	3.1	71
28	Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix. Nanotechnology, 2008, 19, 424019.	2.6	70
29	A New Passivation Route Leading to Over 8% Efficient PbSe Quantumâ€Dot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals. Advanced Materials, 2017, 29, 1703214.	21.0	69
30	Role of the interface for the electronic structure of Si quantum dots. Physical Review B, 2008, 78, .	3.2	66
31	Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix. Thin Solid Films, 2009, 517, 5646-5652.	1.8	66
32	Correlating flat band and onset potentials for solar water splitting on model hematite photoanodes. RSC Advances, 2015, 5, 61021-61030.	3.6	66
33	Trendsetters in Highâ€Efficiency Organic Solar Cells: Toward 20% Power Conversion Efficiency. Solar Rrl, 2020, 4, 1900342.	5.8	66
34	Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. Progress in Photovoltaics: Research and Applications, 2011, 19, 813-824.	8.1	63
35	V2O5 -PEDOT: PSS bilayer as hole transport layer for highly efficient and stable perovskite solar cells. Organic Electronics, 2018, 53, 66-73.	2.6	63
36	Atom Probe Tomography Analysis of Boron and/or Phosphorus Distribution in Doped Silicon Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 17845-17852.	3.1	62

#	Article	IF	CITATIONS
37	Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature. Nano Letters, 2018, 18, 2304-2310.	9.1	62
38	Interplay between the hot phonon effect and intervalley scattering on the cooling rate of hot carriers in GaAs and InP. Progress in Photovoltaics: Research and Applications, 2012, 20, 82-92.	8.1	61
39	Theoretical and Experimental Investigation of the Electronic Structure and Quantum Confinement of Wet-Chemistry Synthesized Ag ₂ S Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 867-872.	3.1	61
40	Significant Improvement in the Performance of PbSe Quantum Dot Solar Cell by Introducing a CsPbBr ₃ Perovskite Colloidal Nanocrystal Back Layer. Advanced Energy Materials, 2017, 7, 1601773.	19.5	56
41	A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems. International Journal of Hydrogen Energy, 2007, 32, 2703-2711.	7.1	55
42	Wrapping the walls of n-TiO2 nanotubes with p-CuInS2 nanoparticles using pulsed-electrodeposition for improved heterojunction photoelectrodes. Chemical Communications, 2011, 47, 11288.	4.1	55
43	Fabrication and electrical characteristics of Si nanocrystal/c-Si heterojunctions. Applied Physics Letters, 2007, 91, 123510.	3.3	50
44	Lessons Learnt from Spatially Resolved Electro―and Photoluminescence Imaging: Interfacial Delamination in CH ₃ NH ₃ PbI ₃ Planar Perovskite Solar Cells upon Illumination. Advanced Energy Materials, 2017, 7, 1602111.	19.5	50
45	Enhanced optoelectronic performance in AgBiS ₂ nanocrystals obtained <i>via</i> an improved amine-based synthesis route. Journal of Materials Chemistry C, 2018, 6, 731-737.	5.5	49
46	MoS2 incorporated hybrid hole transport layer for high performance and stable perovskite solar cells. Synthetic Metals, 2018, 246, 195-203.	3.9	49
47	Improving Cu ₂ ZnSnS ₄ (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact. Physica Status Solidi - Rapid Research Letters, 2014, 8, 966-970.	2.4	48
48	Fabrication and characterization of Si nanocrystals in SiC matrix produced by magnetron cosputtering. Journal of Vacuum Science & Technology B, 2007, 25, 1327-1335.	1.3	46
49	Energy selective contacts for hot carrier solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 1546-1550.	6.2	46
50	Si solid-state quantum dot-based materials for tandem solar cells. Nanoscale Research Letters, 2012, 7, 193.	5.7	46
51	Solution-processed WO3 and water-free PEDOT:PSS composite for hole transport layer in conventional perovskite solar cell. Electrochimica Acta, 2019, 319, 349-358.	5.2	44
52	Influence of EDTA concentration on the structure and properties of SnS films prepared by electro-deposition. Surface and Coatings Technology, 2008, 202, 6070-6074.	4.8	43
53	Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix. Nanoscale Research Letters, 2011, 6, 129.	5.7	42
54	Formation and photoluminescence of Si nanocrystals in controlled multilayer structure comprising of Si-rich nitride and ultrathin silicon nitride barrier layers. Thin Solid Films, 2011, 519, 5408-5412.	1.8	42

#	Article	IF	CITATIONS
55	Sulphur diffusion in CdTe and the phase diagram of the CdS–CdTe pseudo-binary alloy. Journal of Crystal Growth, 1999, 197, 743-748.	1.5	41
56	The effects of annealing temperature on the photoluminescence from silicon nitride multilayer structures. Journal of Crystal Growth, 2008, 310, 3680-3684.	1.5	41
57	Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals. Optics Letters, 2011, 36, 3990.	3.3	41
58	Role of Surface Recombination in Halide Perovskite Nanoplatelets. ACS Applied Materials & Interfaces, 2018, 10, 31586-31593.	8.0	41
59	Practical Factors Lowering Conversion Efficiency of Hot Carrier Solar Cells. Applied Physics Express, 2010, 3, 104301.	2.4	40
60	Effect of Halide Treatments on PbSe Quantum Dot Thin Films: Stability, Hot Carrier Lifetime, and Application to Photovoltaics. Journal of Physical Chemistry C, 2015, 119, 24149-24155.	3.1	40
61	High Performance PbS Colloidal Quantum Dot Solar Cells by Employing Solutionâ€Processed CdS Thin Films from a Singleâ€6ource Precursor as the Electron Transport Layer. Advanced Functional Materials, 2017, 27, 1703687.	14.9	40
62	Size controlled synthesis of Ge nanocrystals in SiO2 at temperatures below 400 °C using magnetron sputtering. Applied Physics Letters, 2010, 96, 261901.	3.3	39
63	Low-temperature processed efficient and colourful semitransparent perovskite solar cells for building integration and tandem applications. Organic Electronics, 2019, 65, 401-411.	2.6	39
64	Fabrication of multilayered Ge nanocrystals by magnetron sputtering and annealing. Nanotechnology, 2008, 19, 455611.	2.6	37
65	In situ low temperature growth of poly-crystalline germanium thin film on glass by RF magnetron sputtering. Solar Energy Materials and Solar Cells, 2010, 94, 1501-1505.	6.2	37
66	A comparison of hydrogen storage technologies for solar-powered stand-alone power supplies: A photovoltaic system sizing approach. International Journal of Hydrogen Energy, 2007, 32, 2712-2718.	7.1	32
67	Nanoscale Characterization of Carrier Dynamic and Surface Passivation in InGaN/GaN Multiple Quantum Wells on GaN Nanorods. ACS Applied Materials & Interfaces, 2016, 8, 31887-31893.	8.0	32
68	Bipolar Photothermoelectric Effect Across Energy Filters in Single Nanowires. Nano Letters, 2017, 17, 4055-4060.	9.1	32
69	Enhancing PbS Colloidal Quantum Dot Tandem Solar Cell Performance by Graded Band Alignment. Journal of Physical Chemistry Letters, 2019, 10, 5729-5734.	4.6	32
70	Passivation effects in B doped self-assembled Si nanocrystals. Applied Physics Letters, 2014, 105, 222108.	3.3	30
71	Improved nanocrystal formation, quantum confinement and carrier transport properties of doped Si quantum dot superlattices for third generation photovoltaics. Progress in Photovoltaics: Research and Applications, 2013, 21, 569-577.	8.1	29
72	Effect of Blend Composition on Bulk Heterojunction Organic Solar Cells: A Review. Solar Rrl, 2017, 1, 1700035.	5.8	29

#	Article	IF	CITATIONS
73	Thiocyanate assisted nucleation for high performance mix-cation perovskite solar cells with improved stability. Journal of Power Sources, 2020, 466, 228320.	7.8	29
74	Resonant tunneling through defects in an insulator: Modeling and solar cell applications. Journal of Applied Physics, 2004, 96, 5006-5012.	2.5	28
75	Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells. Nanoscale Research Letters, 2010, 5, 1762-1767.	5.7	28
76	Air-stable PbS quantum dots synthesized with slow reaction kinetics via a PbBr ₂ precursor. RSC Advances, 2015, 5, 68579-68586.	3.6	27
77	Investigation of anti-solvent induced optical properties change of cesium lead bromide iodide mixed perovskite (CsPbBr3-xlx) quantum dots. Journal of Colloid and Interface Science, 2017, 504, 586-592.	9.4	27
78	A review on thermalization mechanisms and prospect absorber materials for the hot carrier solar cells. Solar Energy Materials and Solar Cells, 2021, 225, 111073.	6.2	27
79	Size dependent optical properties of Si quantum dots in Si-rich nitride/Si3N4 superlattice synthesized by magnetron sputtering. Journal of Applied Physics, 2011, 109, .	2.5	26
80	Quasi-Two-Dimensional Luminescent Silicon Nanosheets. Journal of Physical Chemistry C, 2018, 122, 18912-18921.	3.1	26
81	Sputter-grown Si quantum dot nanostructures for tandem solar cells. Journal Physics D: Applied Physics, 2013, 46, 024003.	2.8	25
82	Accurate analysis of the size distribution and crystallinity of boron doped Si nanocrystals via Raman and PL spectra. RSC Advances, 2017, 7, 34244-34250.	3.6	25
83	Towards an understanding of hot carrier cooling mechanisms in multiple quantum wells. Japanese Journal of Applied Physics, 2017, 56, 091201.	1.5	25
84	Doping of Silicon Quantum Dots Embedded in Nitride Matrix for All-Silicon Tandem Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE10.	1.5	25
85	Impact ionization and Auger recombination at high carrier temperature. Solar Energy Materials and Solar Cells, 2009, 93, 797-802.	6.2	24
86	Rapid thermal annealed Molybdenum back contact for Cu2ZnSnS4 thin film solar cells. Applied Physics Letters, 2015, 106, .	3.3	24
87	Hafnium nitride for hot carrier solar cells. Solar Energy Materials and Solar Cells, 2016, 144, 781-786.	6.2	24
88	Effects of non-ideal energy selective contacts and experimental carrier cooling rate on the performance of an indium nitride based hot carrier solar cell. Applied Physics Letters, 2011, 99, .	3.3	23
89	Extended hot carrier lifetimes observed in bulk In0.265±0.02Ga0.735N under high-density photoexcitation. Applied Physics Letters, 2016, 108, .	3.3	22
90	Electrical properties of conductive Ge nanocrystal thin films fabricated by low temperature <i>in situ</i> growth. Nanotechnology, 2011, 22, 125204.	2.6	21

#	Article	IF	CITATIONS
91	Electroluminescence from Si nanocrystal/c-Si heterojunction light-emitting diodes. Applied Physics Letters, 2011, 99, 251113.	3.3	21
92	Limiting efficiency of generalized realistic c-Si solar cells coupled to ideal up-converters. Journal of Applied Physics, 2012, 112, .	2.5	21
93	Investigation of carrier-carrier scattering effect on the performance of hot carrier solar cells with relaxation time approximation. Applied Physics Letters, 2013, 102, .	3.3	21
94	Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells. Nanoscale, 2013, 5, 7499.	5.6	20
95	Quantification of hot carrier thermalization in PbS colloidal quantum dots by power and temperature dependent photoluminescence spectroscopy. RSC Advances, 2016, 6, 90846-90855.	3.6	20
96	Improving carrier extraction in a PbSe quantum dot solar cell by introducing a solution-processed antimony-doped SnO ₂ buffer layer. Journal of Materials Chemistry C, 2018, 6, 9861-9866.	5.5	20
97	Designing Bottom Silicon Solar Cells for Multijunction Devices. IEEE Journal of Photovoltaics, 2015, 5, 683-690.	2.5	19
98	Synthesis of nano-crystalline germanium carbide using radio frequency magnetron sputtering. Thin Solid Films, 2015, 592, 162-166.	1.8	19
99	Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy. Solar Energy Materials and Solar Cells, 2016, 150, 51-56.	6.2	19
100	Generation of hot carrier population in colloidal silicon quantum dots for high-efficiency photovoltaics. Solar Energy Materials and Solar Cells, 2016, 145, 391-396.	6.2	19
101	Nanosecond long excited state lifetimes observed in hafnium nitride. Solar Energy Materials and Solar Cells, 2017, 169, 13-18.	6.2	19
102	Semi-Empirical Limiting Efficiency of Singlet-Fission-Capable Polyacene/Inorganic Hybrid Solar Cells. Journal of Physical Chemistry C, 2014, 118, 2298-2305.	3.1	18
103	Fabrication and characterization of tin-based nanocrystals. Journal of Applied Physics, 2007, 102, 114304.	2.5	17
104	Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage. Nanotechnology, 2017, 28, 434001.	2.6	17
105	Optimisation of annealing temperature for low temperature processed inverted structure Caesium Formamidinium Lead Triiodide perovskite solar cells. Materials Science in Semiconductor Processing, 2019, 102, 104580.	4.0	17
106	Free charges <i>versus</i> excitons: photoluminescence investigation of InGaN/GaN multiple quantum well nanorods and their planar counterparts. Nanoscale, 2018, 10, 5358-5365.	5.6	16
107	Review of the mechanisms for the phonon bottleneck effect in Ill–V semiconductors and their application for efficient hot carrier solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30, 581-596.	8.1	16
108	N-type conductivity of nanostructured thin film composed of antimony-doped Si nanocrystals in silicon nitride matrix. Europhysics Letters, 2011, 96, 17011.	2.0	15

#	Article	IF	CITATIONS
109	Silicon nanocrystal photovoltaic device fabricated via photolithography and its current–voltage temperature dependence. Solar Energy Materials and Solar Cells, 2014, 128, 435-440.	6.2	15
110	Post-Sputtering Heat Treatments of Molybdenum on Silicon Wafer. Applied Sciences (Switzerland), 2018, 8, 1692.	2.5	15
111	Limiting Efficiency of Erbium-Based Up-Conversion for Generalized Realistic c-Si Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 799-806.	2.5	14
112	Zinc diffusion in tellurium doped gallium antimonide. Journal of Electronic Materials, 1996, 25, 1108-1112.	2.2	13
113	Formation of a nanocomposite from plasma enhanced chemical vapour deposition multilayer structures. Journal of Crystal Growth, 2008, 310, 3685-3689.	1.5	13
114	Characterisation of size-controlled and red luminescent Ge nanocrystals in multilayered superlattice structure. Thin Solid Films, 2010, 518, 5483-5487.	1.8	13
115	Optical characterisation of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix for third generation photovoltaics. Nanoscale Research Letters, 2011, 6, 612.	5.7	13
116	Ultra-thin silicon nitride barrier implementation for Si nano-crystals embedded in amorphous silicon carbide matrix with hybrid superlattice structure. Europhysics Letters, 2011, 95, 67006.	2.0	13
117	Accurate determination of the size distribution of Si nanocrystals from PL spectra. RSC Advances, 2015, 5, 55119-55125.	3.6	13
118	Atom probe tomography of phosphorus- and boron-doped silicon nanocrystals with various compositions of silicon rich oxide. MRS Communications, 2016, 6, 283-288.	1.8	13
119	Increased methane production in cyanobacteria and methanogenic microbe co-cultures. Bioresource Technology, 2017, 243, 686-692.	9.6	13
120	Anomalous Structural Evolution and Glassy Lattice in Mixedâ€Halide Hybrid Perovskites. Small, 2022, 18, e2200847.	10.0	13
121	Study on electrical properties of Si quantum dots based materials. Physica Status Solidi (B): Basic Research, 2011, 248, 472-476.	1.5	12
122	All-silicon tandem solar cells: Practical limits for energy conversion and possible routes for improvement. Journal of Applied Physics, 2016, 119, .	2.5	12
123	Resonant Tunneling through Monolayer Si Colloidal Quantum Dots and Ge Nanocrystals. Advanced Functional Materials, 2017, 27, 1605348.	14.9	12
124	Properties of silicon nanocrystals with boron and phosphorus doping fabricated via silicon rich oxide and silicon dioxide bilayers. Materials Research Express, 2017, 4, 075004.	1.6	12
125	Potential of HfN, ZrN, and TiH as hot carrier absorber and Al ₂ O ₃ /Ge quantum well/Al ₂ O ₃ and Al ₂ O ₃ /PbS quantum dots/Al ₂ O ₃ as energy selective contacts. Japanese Journal of Applied Physics, 2017, 56, 08MA03.	1.5	12
126	A Study of the Phase Boundaries and Lattice Parameters of the CdS-CdTe Pseudobinary System. Journal of Materials Science Letters, 1998, 17, 1511-1514.	0.5	11

#	Article	IF	CITATIONS
127	Introducing dopants by diffusion to improve the conductivity of silicon quantum dot materials in 3 rd generation photovoltaic devices. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 205-208.	0.8	11
128	Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure. Journal of Applied Physics, 2015, 118, 154305.	2.5	11
129	Observation of Hot Carriers Existing in Ag ₂ S Nanoparticles and Its Implication on Solar Cell Application. Journal of Physical Chemistry C, 2016, 120, 10199-10205.	3.1	11
130	Pulsed KrF excimer laser dopant activation in nanocrystal silicon in a silicon dioxide matrix. Applied Physics Letters, 2016, 108, .	3.3	11
131	Difference in hot carrier cooling rate between Langmuir–Blodgett and drop cast PbS QD films due to strong electron–phonon coupling. Nanoscale, 2017, 9, 17133-17142.	5.6	11
132	Surface states induced high P-type conductivity in nanostructured thin film composed of Ge nanocrystals in SiO2 matrix. Applied Physics Letters, 2010, 97, 132109.	3.3	10
133	Single layer of silicon quantum dots in silicon oxide matrix: Investigation of forming gas hydrogenation on photoluminescence properties and study of the composition of silicon rich oxide layers. Journal of Crystal Growth, 2011, 327, 84-88.	1.5	10
134	CHAPTER 12. Hot Carrier Solar Cells. RSC Energy and Environment Series, 0, , 379-424.	0.5	10
135	Atom probe tomography of sizeâ€controlled phosphorus doped silicon nanocrystals. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1600376.	2.4	10
136	Structural and optical study of Ge nanocrystals embedded in Si3N4 matrix. Energy Procedia, 2011, 10, 20-27.	1.8	9
137	Surface plasmons for improving the performance of quantum dot structures for third generation solar cell applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 181-184.	0.8	9
138	Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber. Japanese Journal of Applied Physics, 2012, 51, 10ND02.	1.5	9
139	Hot Carrier solar cell absorbers: Superstructures, materials and mechanisms for slowed carrier cooling. , 2012, , .		9
140	Sizeâ€dependent evolution of phonon confinement in colloidal Si nanoparticles. Journal of Raman Spectroscopy, 2015, 46, 1110-1116.	2.5	9
141	Ab initio calculation of halide ligand passivation onÂPbSe quantum dot facets. RSC Advances, 2016, 6, 104699-104707.	3.6	9
142	<i>In situ</i> formation of tin nanocrystals embedded in silicon nitride matrix. Journal of Applied Physics, 2009, 105, .	2.5	8
143	Lateral growth of Ge nanocrystals in a thin Ge-rich silicon nitride layer. Journal of Crystal Growth, 2013, 383, 36-42.	1.5	8
144	The impact of disorder on charge transport in three dimensional quantum dot resonant tunneling structures. Journal of Applied Physics, 2014, 116, 163707.	2.5	8

#	Article	IF	CITATIONS
145	Characterisation of active dopants in boron-doped self-assembled silicon nanostructures. Applied Physics Letters, 2016, 109, .	3.3	8
146	MgCl ₂ passivated ZnO electron transporting layer to improve PbS quantum dot solar cells. Nanotechnology, 2019, 30, 085403.	2.6	8
147	Hot carrier solar cells: Challenges and recent progress. , 2010, , .		7
148	Impact of disorder in double barrier QD structures on energy selectivity investigated by two dimensional effective mass approximation. Energy Procedia, 2010, 2, 213-219.	1.8	7
149	Effect of substrate temperature and radio frequency power on compositional, structural and optical properties of amorphous germanium carbide films deposited using sputtering. Journal of Non-Crystalline Solids, 2016, 443, 97-102.	3.1	7
150	Hot Carrier Cooling in In _{0.17} Ga _{0.83} As/GaAs _{0.80} P _{0.20} Multiple Quantum Wells: The Effect of Barrier Thickness. IEEE Journal of Photovoltaics, 2016, 6, 166-171.	2.5	7
151	In-situ fabrication and characterization of ordered Ge QDs in Si3N4 matrix without barrier layers by rf-magnetron sputtering. Applied Surface Science, 2014, 290, 167-171.	6.1	6
152	Characterization of a Cu2 ZnSnS4 solar cell fabricated by sulfurization of metallic precursor Mo/Zn/Cu/Sn. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2074-2079.	1.8	6
153	Ab initio study of M ₂ SnBr ₆ (M = K, Rb, Cs): Electronic and optical properties. Europhysics Letters, 2016, 115, 57002.	2.0	6
154	Repurposing commercial anaerobic digester wastewater to improve cyanobacteria cultivation and digestibility for bioenergy systems. Sustainable Energy and Fuels, 2019, 3, 841-849.	4.9	6
155	Capacitance and conductance characteristics of silicon nanocrystal metal–insulator–semiconductor devices. Solid-State Electronics, 2009, 53, 530-539.	1.4	5
156	Modelling of metal–insulator–semiconductor devices featuring a silicon quantum well. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2211-2217.	2.7	5
157	display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.8	5
158	Optimized resonant tunnelling structures with high conductivity and selectivity. Europhysics Letters, 2011, 96, 57006.	2.0	5
159	Si and Other Group IV Quantum Dot Based Materials for Tandem Solar Cells. Energy Procedia, 2012, 15, 200-205.	1.8	5
160	Study of Photo-cathode Materials for Tandem Photoelectrochemical Cell for Direct Water Splitting. Energy Procedia, 2012, 22, 10-14.	1.8	5
161	Investigation in feasibility of Molybdenum as a back contact layer for Silicon based quantum dot solar cells. Proceedings of SPIE, 2013, , .	0.8	5
162	Theoretical calculation of the vibrational and thermal properties of wurtzite InN-GaN multiple quantum well superlattice. Journal of Applied Physics, 2013, 113, 164304.	2.5	5

#	Article	IF	CITATIONS
163	Evaluation of hafnium nitride and zirconium nitride as Hot Carrier absorber. , 2014, , .		5
164	Improvement of Mo/Cu2ZnSnS4 interface for Cu2ZnSnS4 (CZTS) thin film solar cell application. Materials Research Society Symposia Proceedings, 2014, 1638, 1.	0.1	5
165	Effect of blend composition on ternary blend organic solar cells using a low band gap polymer. Synthetic Metals, 2016, 212, 142-153.	3.9	5
166	Inelastic X-ray scattering measurements of Ill–V multiple quantum wells. Applied Physics Letters, 2017, 110, 043102.	3.3	5
167	Effect of vacuum thermal annealing on a molybdenum bilayer back contact deposited by radio-frequency magnetron sputtering for chalcogenide- and kesterite-based solar cells. Journal of the Korean Physical Society, 2017, 71, 968-973.	0.7	5
168	Hot carrier transfer processes in nonstoichiometric titanium hydride. Japanese Journal of Applied Physics, 2017, 56, 08MA10.	1.5	5
169	Get them while they're hot. Nature Energy, 2020, 5, 280-281.	39.5	5
170	Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber. Japanese Journal of Applied Physics, 2012, 51, 10ND02.	1.5	5
171	Effects of thermal annealing on the distribution of boron and phosphorus in p-i-n structured silicon nanocrystals embedded in silicon dioxide. Nanotechnology, 2022, 33, 075709.	2.6	5
172	Explore the correlation between intervalley scattering and phonon bottleneck effect on the hot carrier relaxation in bulk GaSb and InN for hot carrier solar cells. Journal of Applied Physics, 2021, 130, .	2.5	5
173	Study of silicon quantum dot p-n or p-i-n junction devices on c-Si substrate. Optoelectronic and Microelectronic Materials and Devices (COMMAD), Conference on, 2008, , .	0.0	4
174	Structural and photoluminescence properties of superlattice structures consisting of Sn-rich SiO2 and stoichiometric SiO2 layers. Thin Solid Films, 2011, 520, 641-645.	1.8	4
175	Hot carrier solar cell absorbers: materials, mechanisms and nanostructures. Proceedings of SPIE, 2014, , .	0.8	4
176	Dynamics of metal-induced crystallization of ultrathin Ge films by rapid thermal annealing. Applied Physics Letters, 2015, 107, .	3.3	4
177	Theoretical investigation of carrier transfer by an optical contacting scheme for optoelectronic application. Journal of Applied Physics, 2016, 119, .	2.5	4
178	Morphology effects on the bandgap of silicon nanocrystals—Numerically modelled by a full multi-grid method. Journal of Applied Physics, 2017, 121, .	2.5	4
179	Optoelectronic reciprocity in hot carrier solar cells with ideal energy selective contacts. Progress in Photovoltaics: Research and Applications, 2021, 29, 433-444.	8.1	4
180	Simultaneous Fe3O4 Nanoparticle Formation and Catalyst-Driven Hydrothermal Cellulose Degradation. ACS Omega, 2021, 6, 10790-10800.	3.5	4

1.5

2

#	Article	IF	CITATIONS
181	Conductivity of self-organized silicon quantum dots embedded in silicon dioxide. , 2005, , .		3
182	Up Conversion for Photovoltaics. Materials Research Society Symposia Proceedings, 2008, 1101, 1.	0.1	3
183	Residual stress study of silicon quantum dot in silicon carbide matrix by Raman measurement. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 185-188.	0.8	3
184	Nanomaterials for third generation photovoltaics. International Journal of Nanoparticles, 2011, 4, 200.	0.3	3
185	Design of bottom silicon solar cell for multijunction devices. , 2013, , .		3
186	Study on the Ultrafast Carrier Dynamics in the Bulk In0.265GaN Thin Film. Energy Procedia, 2015, 84, 165-175.	1.8	3
187	Boron doped Si rich oxide/SiO2 and silicon rich nitride/SiNx bilayers on molybdenum-fused silica substrates for vertically structured Si quantum dot solar cells. Journal of Applied Physics, 2015, 118, 045303.	2.5	3
188	Structural, optical, and electrical properties of silicon nanocrystals fabricated by high silicon content silicon-rich oxide and silicon dioxide bilayers. Applied Physics Express, 2016, 9, 115001.	2.4	3
189	Investigation of Structural and Optical Properties of Atomic Layer Deposited Hafnium Nitride Films. , 2019, , .		3
190	Passivating Quantum Dot Carrier Transport Layer with Metal Salts. ACS Applied Materials & Interfaces, 2021, 13, 28679-28688.	8.0	3
191	Hafnium and zirconium nitrides with rock-salt and Th ₃ P ₄ structures: electronic and phonon band structure calculations to examine hot carrier solar cell and thermoelectric properties. Electronic Structure, 2020, 2, 025004.	2.8	3
192	The scolar programme for photovoltaics in the U.K Renewable Energy, 1998, 15, 598-601.	8.9	2
193	Two Colour Excitation Up-Conversion Efficiency Enhancement for a Silicon Photovoltaic Device using Er3+-Doped Phosphors. , 2006, , .		2
194	Effects of silicon nanocrystallite density on the Raman-scattering spectra of silicon quantum dot superlattices. , 2006, , .		2
195	Effect of annealing temperature on the formation of silicon nanocrystals in a nitride matrix. , 2006, , .		2
196	Preface/Editorial to the Proceedings of Inorganic and Nanostructured Photovoltaics (E-MRS 2009) Tj ETQq0 0 0 r	gBT /Over 1.8	lock 10 Tf 50
197	Fabrication and characterisation of silicon quantum dots in SiO 2 /Si 3 N 4 hybrid matrix. , 2010, , .		2

¹⁹⁸Doping of Silicon Quantum Dots Embedded in Nitride Matrix for All-Silicon Tandem Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE10.

#	Article	IF	CITATIONS
199	Structural, mechanical and optical properties of Ge nanocrystals embedded in superlattices fabricated by in situ low temperature annealing. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 45, 207-213.	2.7	2
200	Size-dependent optical absorption of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix. Journal of Non-Crystalline Solids, 2013, 362, 169-174.	3.1	2
201	Potential of hafnium nitride for the hot carrier solar cell. Proceedings of SPIE, 2013, , .	0.8	2
202	Heterogeneous nano-particle array for the realization of the hot carrier solar cell. , 2013, , .		2
203	Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	2
204	High Si content SRO/SiO2 bilayer superlattices with boron and phosphorus doping for next generation Si quantum dot photovoltaics. , 2015, , .		2
205	Hetero-epitaxial Γ-Al2O3 on Si (100) substrate by sputtering. Materials Letters, 2015, 141, 20-22.	2.6	2
206	Hot carrier cooling mechanisms in multiple quantum wells. , 2017, , .		2
207	Potential for improved transport in core–shell CuInS ₂ nanoparticle solar cells from an Ag surface termination. CrystEngComm, 2018, 20, 3381-3387.	2.6	2
208	Ab initio calculation of electronic transport properties between PbSe quantum dots facets with halide ligands (Cl, Br, I). Japanese Journal of Applied Physics, 2018, 57, 08RF01.	1.5	2
209	Solar Cells Based on Hot Carriers and Quantum Dots. , 2019, , 175-213.		2
210	Degradation of Indigo Carmine in Alkaline Dye-Mediated Direct Carbohydrate Fuel Cell. Journal of the Electrochemical Society, 2021, 168, 044523.	2.9	2
211	Investigating Electronic, Optical, and Phononic Properties of Bulk γ-M ₂ ON ₂ and β-M ₇ O ₈ N ₄ (M = Hf and Zr) Insulators Using Density Functional Theory. ACS Omega, 2022, 7, 9196-9205.	3.5	2
212	Fabrication of multilayered Ge nanocrystals embedded in SiOxGeNy films. Applied Surface Science, 2008, 254, 7527-7530.	6.1	1
213	Assessment of the composition of Silicon-Rich Oxide films for photovoltaic applications by optical techniques. Energy Procedia, 2011, 10, 28-32.	1.8	1
214	Hot carrier solar cells from group III-V quantum well structures. , 2013, , .		1
215	A hot carrier solar cell device model using a coupled electron phonon energy balance model. , 2013, , .		1
216	Hot Carrier Solar Cells: Materials with Modulated Phonon Energy for Slowed Carrier Cooling. , 2013,		1

.10

,.

#	Article	IF	CITATIONS
217	Electronic confinement in modulation doped quantum dots. Applied Physics Letters, 2014, 104, 153102.	3.3	1
218	Capacitance-Voltage characterization of in-situ Boron doped silicon quantum dot in silicon dioxide. , 2014, , .		1
219	Investigation on the effects of phosphine doping in Si nanocrystal material. , 2014, , .		1
220	Study of phonons in self-assembled InAs quantum dots embedded in an InGaAlAs matrix. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 57, 1-5.	2.7	1
221	Characterization and simulation of optical absorption in Si nanocrystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 271-274.	0.8	1
222	Nanoscale characterization of GaN/InGaN multiple quantum wells on GaN nanorods by photoluminescence spectroscopy. , 2017, , .		1
223	Development of Absorber and Energy Selective Contacts for Hot Carrier Solar Cells. , 2017, , .		1
224	Improving hole extraction for PbS quantum dot solar cells. , 2018, , .		1
225	Synthesis and Characterisation of Hafnium Oxynitride Thin Film: Can It Be Used as a Hot Carrier Solar Cell Material?. , 2021, , .		1
226	Mie resonators as rearside light trapping structures in planar crystalline silicon solar cells. , 2018, , .		1
227	Hot carrier dynamics in nitrogen â \in " rich hafnium nitride thin film. , 2020, , .		1
228	Pl–100: Direct comparison of the emerging photovoltaic technologies in multi-technology retrofit building arrays installed in Oxford and Mallorca. Solar Energy Materials and Solar Cells, 2001, 67, 511-518.	6.2	0
229	PII - Late news 24: The scolar programme for photovoltaics in the UK. Solar Energy Materials and Solar Cells, 2001, 67, 673-678.	6.2	Ο
230	A Novel Method Based on Oblique Depositions to Fabricate Quantum Dot Arrays. , 2006, , .		0
231	Possible Approaches to High Efficiency Thermoelectric Devices. , 2006, , .		Ο
232	Study on boron doped silicon quantum dots superlattices for all-silicon tandem solar cells. Optoelectronic and Microelectronic Materials and Devices (COMMAD), Conference on, 2008, , .	0.0	0
233	Structural characterization of solid phase crystallized Si <inf>0.5</inf> Ge <inf>0.5</inf> films for photovoltaic applications. , 2009, , .		0

#	Article	IF	CITATIONS
235	Raman study of stress effect in silicon rich carbide (SiCX) film by furnace and rapid thermal annealing for photovoltaic application. , 2010, , .		0
236	A ultra-thin silicon nitride barrier layer implementation for silicon quantum dots in amorphous silicon carbide matrix in photovoltaic application. Energy Procedia, 2011, 10, 271-281.	1.8	0
237	Up-conversion luminescence enhancement in erbium-doped porous silicon photonic crystals for photovoltaics. , 2011, , .		0
238	Growth and characterization of germanium carbide films for hot carrier solar cell absorber. , 2012, , .		0
239	Effect of Surface Plasmon Resonance on the Photoluminescence from Si Quantum Dot Structures for Third Generation Solar Cell Applications. Materials Research Society Symposia Proceedings, 2012, 1391, 18.	0.1	0
240	Fabrication of two-dimensional close-packed arrays of colloidal silicon nanoparticles via Langmuir-Blodgett deposition. , 2012, , .		0
241	Application of Ge quantum wells fabricated by laser annealing as energy selective contacts for hot-carrier solar cells. , 2012, , .		0
242	Optical properties and electron dynamics in carbon nanodots. , 2013, , .		0
243	Silicon rich carbide as a conductive substrate for Si QD solar cells. Proceedings of SPIE, 2013, , .	0.8	0
244	β-NaYF <inf>4</inf> :Er ³⁺ nanocrystal films as a spectral converter to improve photoconversion efficiency of crystalline silicon solar cells. , 2013, , .		0
245	Silicon-Based Photovoltaics. Series in Optics and Optoelectronics, 2013, , 749-812.	0.0	0
246	Investigation on stability of halide treated PbSe quantum dot thin films for photovoltaic devices. , 2015, , .		0
247	Simplified tight-binding model for conductance calculation with phonon scattering for atomic junctions. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 625-629.	2.7	0
248	Theoretical investigation of plasmon enhanced optically-coupled hot carrier extraction. , 2015, , .		0
249	Carrier dynamics and phonon properties of hafnium nitride: Potential hot carrier solar cell absorber. , 2015, , .		0
250	Fabrication and optical characterisation of InGaN/GaN nanorods. , 2015, , .		0
251	Ultrafast transient absorption study of hot carrier dynamics in hafnium nitride and zirconium nitride. , 2015, , .		0
252	Potential of transition metal nitrides and hydrides as hot carrier solar cell absorbers. , 2015, , .		0

#	Article	IF	CITATIONS
253	Absorption in and scattering from single horizontal Au-contacted InAs/InP heterostructure nanowires. , 2016, , .		0
254	Up-conversion equivalent circuit to boost current in Si cells. Proceedings of SPIE, 2016, , .	0.8	0
255	Metal Hydrides as hot carrier cell absorber materials. Proceedings of SPIE, 2016, , .	0.8	0
256	Selective optical contacting for solar spectrum management. Proceedings of SPIE, 2017, , .	0.8	0
257	Interfacial Area between Heteroâ€Epitaxial γâ€Al ₂ O ₃ and Silicon. Advanced Materials Interfaces, 2017, 4, 1700259.	3.7	0
258	Germanium Template Assisted Integration of Gallium Arsenide Nanocrystals on Silicon: A Versatile Platform for Modern Optoelectronic Materials. Advanced Optical Materials, 2018, 6, 1701329.	7.3	0
259	Investigation of materials for hot carrier solar cell absorbers. , 2019, , .		0
260	Surface Passivation on PEDOT:PSS in conventional perovskite solar cells. , 2019, , .		0
261	Experimental investigation of double barrier structures for energy selective contacts for hot carrier solar cells. , 2019, , .		0
262	High-temperature annealing effects on molybdenum–silicon contact substrate for vertically structured silicon quantum-dot solar cells. Applied Nanoscience (Switzerland), 2019, 9, 135-142.	3.1	0
263	Structural and Optical Properties of Nonstoichiometric Titanium Hydride, Vanadium Hydride and Zirconium Hydride as Hot Carrier Solar Cell Absorbers. , 2021, , .		0
264	Effect of nanostructuring on picosecond acoustics in a Zr film. Physica Scripta, 2021, 96, 125716.	2.5	0
265	Ultrafast carrier dynamics in GaN/InGaN multiple quantum wells nanorods. , 2018, , .		0
266	Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands. , 2018, , .		0
267	Materials and mechanisms for hot carrier solar cell absorbers. , 2020, , .		Ο