
Huawei Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8268234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of inert copper for significantly enhanced hydrogen evolution behaviors by trace ruthenium doping. Nano Energy, 2022, 92, 106763.	8.2	38
2	Surface conversion derived core-shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater. Applied Catalysis B: Environmental, 2022, 315, 121554.	10.8	29
3	Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction. Chemical Engineering Journal, 2021, 405, 126977.	6.6	56
4	Energy Accumulation Enabling Fast Synthesis of Intercalated Graphite and Operando Decoupling for Lithium Storage. Advanced Functional Materials, 2021, 31, 2009801.	7.8	9
5	Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing. Nano Energy, 2021, 85, 106027.	8.2	50
6	Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer. Nano Energy, 2021, 88, 106276.	8.2	49
7	Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond. Journal of Materials Chemistry A, 2021, 10, 50-88.	5.2	44
8	Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting. Energy and Environmental Science, 2020, 13, 545-553.	15.6	169
9	Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution. Nano Energy, 2020, 69, 104367.	8.2	58
10	Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA cm ^{â^'2} . Energy and Environmental Science, 2020, 13, 4990-4999.	15.6	125
11	Structural Design of Amorphous CoMoP <i>_x</i> with Abundant Active Sites and Synergistic Catalysis Effect for Effective Water Splitting. Advanced Functional Materials, 2020, 30, 2003889.	7.8	128
12	Ultrafast Construction of Oxygen-Containing Scaffold over Graphite for Trapping Ni ²⁺ into Single Atom Catalysts. ACS Nano, 2020, 14, 11662-11669.	7.3	20
13	Achieving Multiple and Tunable Ratios of Syngas to Meet Various Downstream Industrial Processes. ACS Sustainable Chemistry and Engineering, 2020, 8, 3328-3335.	3.2	11
14	Lowâ€Temperature Fast Production of Carbon and Acetic Acid Dualâ€Promoted Pd/C Catalysts. Chemistry - A European Journal, 2019, 25, 13683-13687.	1.7	3
15	Is It Appropriate to Use the Nafion Membrane in Electrocatalytic N ₂ Reduction?. Small Methods, 2019, 3, 1900474.	4.6	56
16	Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution. Nano Energy, 2019, 58, 778-785.	8.2	81
17	A Universal Converse Voltage Process for Triggering Transition Metal Hybrids In Situ Phase Restruction toward Ultrahighâ€Rate Supercapacitors. Advanced Materials, 2019, 31, e1901241.	11.1	81
18	Microwaveâ€Assisted Ultrafast Synthesis of Molybdenum Carbide Nanoparticles Grown on Carbon Matrix for Efficient Hydrogen Evolution Reaction. Small Methods, 2019, 3, 1900259.	4.6	46

Huawei Huang

#	Article	IF	CITATIONS
19	A Phase Transformationâ€Resistant Electrode Enabled by a MnO ₂ â€Confined Effect for Enhanced Energy Storage. Advanced Functional Materials, 2019, 29, 1901342.	7.8	18
20	Phase controllable synthesis of Ni2+ post-modified CoP nanowire for enhanced oxygen evolution. Nano Energy, 2019, 62, 136-143.	8.2	66
21	Electrochemically Driven Coordination Tuning of FeOOH Integrated on Carbon Fiber Paper for Enhanced Oxygen Evolution. Small, 2019, 15, e1901015.	5.2	46
22	Restructuring of Cu ₂ O to Cu ₂ O@Cu-Metal–Organic Frameworks for Selective Electrochemical Reduction of CO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 9904-9910.	4.0	174
23	Implanting CNT Forest onto Carbon Nanosheets as Multifunctional Hosts for Highâ€Performance Lithium Metal Batteries. Small Methods, 2019, 3, 1800546.	4.6	34
24	Theoretical and Experimental Insights into the Effects of Oxygen-Containing Species within CNTs toward Triiodide Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 7527-7534.	3.2	10
25	Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives. Nano Energy, 2019, 57, 459-472.	8.2	232
26	An electrocatalyst with anti-oxidized capability for overall water splitting. Nano Research, 2018, 11, 3411-3418.	5.8	16
27	Ultrahigh Rate and Longâ€Life Sodiumâ€lon Batteries Enabled by Engineered Surface and Nearâ€Surface Reactions. Advanced Materials, 2018, 30, 1702486.	11.1	153
28	Co ion-intercalation amorphous and ultrathin microstructure for high-rate oxygen evolution. Energy Storage Materials, 2018, 10, 291-296.	9.5	14
29	An effective graphene confined strategy to construct active edge sites-enriched nanosheets with enhanced oxygen evolution. Carbon, 2018, 126, 437-442.	5.4	37
30	Phosphate Species up to 70% Mass Ratio for Enhanced Pseudocapacitive Properties. Small, 2018, 14, e1803811.	5.2	29
31	Surfaceâ€Confined Fabrication of Ultrathin Nickel Cobalt‣ayered Double Hydroxide Nanosheets for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2018, 28, 1803272.	7.8	215
32	Graphite-graphene architecture stabilizing ultrafine Co3O4 nanoparticles for superior oxygen evolution. Carbon, 2018, 140, 17-23.	5.4	20
33	Decoupling atomic-layer-deposition ultrafine RuO 2 for high-efficiency and ultralong-life Li-O 2 batteries. Nano Energy, 2017, 34, 399-407.	8.2	63
34	Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy, 2017, 34, 472-480.	8.2	258
35	Ultrasensitive Ironâ€Triggered Nanosized Fe–CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1602148.	10.2	216
36	Ultrafine MoO ₂ arbon Microstructures Enable Ultralong‣ife Powerâ€Type Sodium Ion Storage by Enhanced Pseudocapacitance. Advanced Energy Materials, 2017, 7, 1602880.	10.2	306

Huawei Huang

#	Article	IF	CITATIONS
37	A superhydrophilic "nanoglue―for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy and Environmental Science, 2017, 10, 1958-1965.	15.6	294
38	Supercapacitors: High‧tackingâ€Đensity, Superiorâ€Roughness LDH Bridged with Vertically Aligned Graphene for Highâ€Performance Asymmetric Supercapacitors (Small 37/2017). Small, 2017, 13, .	5.2	1
39	Sodiumâ€Ion Batteries: Ultrafine MoO ₂ â€Carbon Microstructures Enable Ultralongâ€Life Powerâ€Type Sodium Ion Storage by Enhanced Pseudocapacitance (Adv. Energy Mater. 15/2017). Advanced Energy Materials, 2017, 7, .	10.2	2
40	Highâ€Stackingâ€Density, Superiorâ€Roughness LDH Bridged with Vertically Aligned Graphene for Highâ€Performance Asymmetric Supercapacitors. Small, 2017, 13, 1701288.	5.2	83
41	Interface Engineering of Ni ₃ N@Fe ₃ N Heterostructure Supported on Carbon Fiber for Enhanced Water Oxidation. Industrial & Engineering Chemistry Research, 2017, 56, 14245-14251.	1.8	35
42	Ultrathin Nitrogenâ€Enriched Hybrid Carbon Nanosheets for Supercapacitors with Ultrahigh Rate Performance and High Energy Density. ChemElectroChem, 2017, 4, 369-375.	1.7	32
43	Electrocatalysts: Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe-Layered Double Hydroxide Assembled on Graphene (Adv. Mater. Interfaces 7/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	3
44	Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe‣ayered Double Hydroxide Assembled on Graphene. Advanced Materials Interfaces, 2016, 3, 1500782.	1.9	165
45	Strongly Coupled Architectures of Cobalt Phosphide Nanoparticles Assembled on Graphene as Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2016, 3, 681-681.	1.7	0
46	NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon, 2016, 110, 1-7.	5.4	175
47	Bridging of Ultrathin NiCo ₂ O ₄ Nanosheets and Graphene with Polyaniline: A Theoretical and Experimental Study. Chemistry of Materials, 2016, 28, 5855-5863.	3.2	116
48	Ultrasmall diiron phosphide nanodots anchored on graphene sheets with enhanced electrocatalytic activity for hydrogen production via high-efficiency water splitting. Journal of Materials Chemistry A, 2016, 4, 16028-16035.	5.2	44
49	Strongly Coupled Architectures of Cobalt Phosphide Nanoparticles Assembled on Graphene as Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2016, 3, 719-725.	1.7	82
50	CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2016, 3, 850-850.	1.7	4
51	CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as Highâ€Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2016, 3, 906-912.	1.7	78
52	Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy and Environmental Science, 2016, 9, 1299-1307.	15.6	623
53	3D Porous Nâ€Doped Graphene Frameworks Made of Interconnected Nanocages for Ultrahighâ€Rate and Longâ€Life Li–O ₂ Batteries. Advanced Functional Materials, 2015, 25, 6913-6920.	7.8	231
54	Towards efficient electrocatalysts for oxygen reduction by doping cobalt into graphene-supported graphitic carbon nitride. Journal of Materials Chemistry A, 2015, 3, 19657-19661.	5.2	47