Li-Zhen Fan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8268185/li-zhen-fan-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 14,186 113 201 h-index g-index citations papers 16,677 209 9.5 7.32 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
201	Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. <i>Journal of Membrane Science</i> , 2022 , 642, 119952	9.6	4
200	Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries. <i>Chemical Engineering Journal</i> , 2022 , 430, 132991	14.7	8
199	Self-Propagating Enabling High Lithium Metal Utilization Ratio Composite Anodes for Lithium Metal Batteries. <i>Nano Letters</i> , 2021 , 21, 791-797	11.5	24
198	Stress Regulation on Atomic Bonding and Ionic Diffusivity: Mechanochemical Effects in Sulfide Solid Electrolytes. <i>Energy & Energy & 2021</i> , 35, 10210-10218	4.1	9
197	Constructing MOF-derived CoP-NC@MXene sandwich-like composite by in-situ intercalation for enhanced lithium and sodium storage. <i>Journal of Materiomics</i> , 2021 ,	6.7	1
196	Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. <i>Journal of Energy Chemistry</i> , 2021 , 52, 210-217	12	35
195	Manipulating interfacial stability of LiNi0.5Co0.3Mn0.2O2 cathode with sulfide electrolyte by nanosized LLTO coating to achieve high-performance all-solid-state lithium batterie. <i>Journal of Energy Chemistry</i> , 2021 , 52, 202-209	12	19
194	Challenges and Recent Progress on Key Materials for Rechargeable Magnesium Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2000787	21.8	51
193	High Areal Capacity Dendrite-Free Li Anode Enabled by Metal©rganic Framework-Derived Nanorod Array Modified Carbon Cloth for Solid State Li Metal Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2001973	15.6	41
192	Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film. <i>Journal of Energy Chemistry</i> , 2021 , 58, 17-24	12	6
191	Asymmetric Polymer Electrolyte Constructed by Metal@rganic Framework for Solid-State, Dendrite-Free Lithium Metal Battery. <i>Advanced Functional Materials</i> , 2021 , 31, 2007198	15.6	72
190	Flexible solid-state self-charging supercapacitor based on symmetric electrodes and piezo-electrolyte. <i>Chemical Engineering Journal</i> , 2021 , 406, 126825	14.7	16
189	Study the structure and electrochemical performance of BaTiO3/S electrode for magnesium-ion batteries. <i>Materials Letters</i> , 2021 , 284, 129033	3.3	4
188	Porous polymer electrolytes for long-cycle stable quasi-solid-state magnesium batteries. <i>Journal of Energy Chemistry</i> , 2021 , 59, 608-614	12	9
187	Cationic potential: An effective descriptor for rational design of layered oxides for sodium-ion batteries. <i>Green Energy and Environment</i> , 2021 , 6, 455-457	5.7	O
186	Confining ultrasmall CoP nanoparticles into nitrogen-doped porous carbon via synchronous pyrolysis and phosphorization for enhanced potassium-ion storage. <i>Chemical Engineering Journal</i> , 2021 , 413, 127508	14.7	13
185	In situ generation of a softBough asymmetric composite electrolyte for dendrite-free lithium metal batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 4018-4025	13	12

(2020-2021)

184	Boosting oxygen evolution reaction activity by tailoring MOF-derived hierarchical Co-Ni alloy nanoparticles encapsulated in nitrogen-doped carbon frameworks <i>RSC Advances</i> , 2021 , 11, 10874-108	8ð ^{.7}	5	
183	A novel gel polymer electrolyte based on trimethylolpropane trimethylacrylate/ionic liquid via in situ thermal polymerization for lithium-ion batteries. <i>Electrochimica Acta</i> , 2021 , 370, 137706	6.7	8	
182	All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries. <i>Chemical Engineering Journal</i> , 2021 , 421, 129965	14.7	10	
181	Research progress on construction and energy storage performance of MXene heterostructures. Journal of Energy Chemistry, 2021 , 62, 220-242	12	10	
180	High-performance heterojunction Ti3C2/CoSe2 with both intercalation and conversion storage mechanisms for magnesium batteries. <i>Chemical Engineering Journal</i> , 2021 , 426, 130747	14.7	4	
179	A three-dimensional interconnected V6O13 nest with a V5+-rich state for ultrahigh Zn ion storage. Journal of Materials Chemistry A, 2020 , 8, 10370-10376	13	39	
178	Synthesis of two-dimensional carbide Mo2CTx MXene by hydrothermal etching with fluorides and its thermal stability. <i>Ceramics International</i> , 2020 , 46, 19550-19556	5.1	30	
177	A flexible self-charging sodium-ion full battery for self-powered wearable electronics. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13267-13276	13	11	
176	Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2020 , 393, 1247	′0 ¹ 5 ^{4.7}	41	
175	Can we find solution to eliminate Li penetration through solid garnet electrolytes?. <i>Materials Today Nano</i> , 2020 , 10, 100075	9.7	30	
174	Batteries: Prelithiated V2C MXene: A High-Performance Electrode for Hybrid Magnesium/Lithium-Ion Batteries by Ion Cointercalation (Small 8/2020). <i>Small</i> , 2020 , 16, 2070043	11	О	
173	Regulating Uniform Li Plating/Stripping via Dual-Conductive Metal-Organic Frameworks for High-Rate Lithium Metal Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2000786	15.6	71	
172	Nitrogen-rich hierarchically porous carbon foams as high-performance electrodes for lithium-based dual-ion capacitor. <i>Journal of Energy Chemistry</i> , 2020 , 48, 187-194	12	21	
171	Prelithiated V C MXene: A High-Performance Electrode for Hybrid Magnesium/Lithium-Ion Batteries by Ion Cointercalation. <i>Small</i> , 2020 , 16, e1906076	11	64	
170	Solvent-Free Synthesis of Thin, Flexible, Nonflammable Garnet-Based Composite Solid Electrolyte for All-Solid-State Lithium Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1903376	21.8	168	
169	Dual Polymer/Liquid Electrolyte with BaTiO3 Electrode for Magnesium Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5882-5892	6.1	10	
168	Mechanical failures in solid-state lithium batteries and their solution. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2020 , 69, 226201	0.6	4	
167	Achieving the robust immobilization of CoP nanoparticles in cellulose nanofiber network-derived carbon chemical bonding for a stable potassium ion storage <i>RSC Advances</i> , 2020 , 10, 44611-44623	3.7	1	

166	All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase. <i>Chemical Engineering Journal</i> , 2020 , 384, 123233	14.7	21
165	P(VDF-HFP)-poly(sulfur-1,3-diisopropenylbenzene) functional polymer electrolyte for lithiumBulfur batteries. <i>Journal of Energy Chemistry</i> , 2020 , 46, 114-122	12	23
164	Coherent SnS2/NiS2 hetero-nanosheet arrays with fast charge transfer for enhanced sodium-ion storage. <i>Applied Surface Science</i> , 2020 , 508, 145241	6.7	20
163	High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. <i>Journal of Materiomics</i> , 2020 , 6, 70-76	6.7	19
162	Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. <i>Energy Storage Materials</i> , 2020 , 26, 283-289	19.4	120
161	Hierarchical Engineering of Porous P2-Na2/3Ni1/3Mn2/3O2 Nanofibers Assembled by Nanoparticles Enables Superior Sodium-Ion Storage Cathodes. <i>Advanced Functional Materials</i> , 2020 , 30, 1907837	15.6	64
160	Self-Chargeable Flexible Solid-State Supercapacitors for Wearable Electronics. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	13
159	Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2020 , 25, 145-153	19.4	46
158	Single-Crystal ⊞eO with Engineered Exposed (001) Facet for High-Rate, Long-Cycle-Life Lithium-Ion Battery Anode. <i>Inorganic Chemistry</i> , 2019 , 58, 12724-12732	5.1	16
157	High Capacity and Superior Cyclic Performances of All-Solid-State Lithium-Sulfur Batteries Enabled by a High-Conductivity LiSnPS Solid Electrolyte. <i>ACS Applied Materials & Discourt Materials & Disc</i>	4-3 <i>&</i> 78	1 ³⁵
156	Growth of carbon nanosheets on carbon nanotube arrays for the fabrication of three-dimensional micro-patterned supercapacitors. <i>Carbon</i> , 2019 , 155, 453-461	10.4	21
155	Realizing a High-Performance Na-Storage Cathode by Tailoring Ultrasmall NaFePOF Nanoparticles with Facilitated Reaction Kinetics. <i>Advanced Science</i> , 2019 , 6, 1900649	13.6	40
154	Solid Garnet Batteries. <i>Joule</i> , 2019 , 3, 1190-1199	27.8	230
153	Boosting fast and durable sodium-ion storage by tailoring well-shaped Na0.44MnO2 nanowires cathode. <i>Electrochimica Acta</i> , 2019 , 313, 122-130	6.7	19
152	Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16712-16719	13	50
151	Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1901047	15.6	178
150	Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2019 , 17, 309-316	19.4	185
149	Two Birds with One Stone: MetalDrganic Framework Derived Micro-/Nanostructured Ni2P/Ni Hybrids Embedded in Porous Carbon for Electrocatalysis and Energy Storage. <i>Advanced Functional</i> Materials 2019, 29, 1901510	15.6	82

(2018-2019)

148	Early Lithium Plating Behavior in Confined Nanospace of 3D Lithiophilic Carbon Matrix for Stable Solid-State Lithium Metal Batteries. <i>Small</i> , 2019 , 15, e1904216	11	44
147	Solid-state lithium metal batteries enabled with high loading composite cathode materials and ceramic-based composite electrolytes. <i>Journal of Power Sources</i> , 2019 , 442, 227230	8.9	35
146	A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode. <i>Nano Research</i> , 2019 , 12, 2919-2924	10	10
145	Chemical Energy Release Driven Lithiophilic Layer on 1 m Commercial Brass Mesh toward Highly Stable Lithium Metal Batteries. <i>Nano Letters</i> , 2019 , 19, 1832-1837	11.5	82
144	Effect of oxygen-containing functional groups in epoxy/reduced graphene oxide composite coatings on corrosion protection and antimicrobial properties. <i>Applied Surface Science</i> , 2018 , 448, 351-3	617	55
143	3D porous binary-heteroatom doped carbon nanosheet/electrochemically exfoliated graphene hybrids for high performance flexible solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8750-8756	13	31
142	Poly(ethylene carbonate)-based electrolytes with high concentration Li salt for all-solid-state lithium batteries. <i>Rare Metals</i> , 2018 , 37, 488-496	5.5	20
141	3D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes. <i>Advanced Energy Materials</i> , 2018 , 8, 1702764	21.8	207
140	High rate integrated quasi-solid state supercapacitors based on nitrogen-enriched active carbon fiber/reduced graphene oxide nanocomposite. <i>Carbon</i> , 2018 , 130, 196-205	10.4	29
139	3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries. <i>ACS Applied Materials & Description</i> (2018), 10, 7069-7078	9.5	200
138	Self-standing Na-storage anode of Fe2O3 nanodots encapsulated in porous N-doped carbon nanofibers with ultra-high cyclic stability. <i>Nano Research</i> , 2018 , 11, 4026-4037	10	35
137	PEO/garnet composite electrolytes for solid-state lithium batteries: From Beramic-in-polymerIto polymer-in-ceramicII <i>Nano Energy,</i> 2018 , 46, 176-184	17.1	672
136	Co2P nanoparticles encapsulated in 3D porous N-doped carbon nanosheet networks as an anode for high-performance sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2139-2147	13	77
135	Reverse microemulsion synthesis of nickel-cobalt hexacyanoferrate/reduced graphene oxide nanocomposites for high-performance supercapacitors and sodium ion batteries. <i>Applied Surface Science</i> , 2018 , 434, 1285-1292	6.7	56
134	Facile synthesis of three-dimensional porous carbon networks for highly stable sodium storage. <i>Ionics</i> , 2018 , 24, 3065-3073	2.7	3
133	Immobilization of tungsten disulfide nanosheets on active carbon fibers as electrode materials for high performance quasi-solid-state asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7835-7841	13	27
132	Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte. <i>Energy Storage Materials</i> , 2018 , 15, 37-45	19.4	145
131	In situ synthesis of a highly active Na2Ti3O7 nanosheet on an activated carbon fiber as an anode for high-energy density supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16186-16195	13	42

130	Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. <i>Journal of Power Sources</i> , 2018 , 392, 232-233	8 ^{8.9}	81
129	Biowaste-derived 3D honeycomb-like porous carbon with binary-heteroatom doping for high-performance flexible solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 160-16	66 ¹³	106
128	High-performance all-solid-state lithium ulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23345-23356	13	30
127	MOF-derived and nitrogen-doped ZnSe polyhedra encapsulated by reduced graphene oxide as the anode for lithium and sodium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23621-23627	13	71
126	Approaching the Downsizing Limit of Maricite NaFePO4 toward High-Performance Cathode for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1801917	15.6	92
125	Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts. <i>Energy Storage Materials</i> , 2018 , 15, 274-281	19.4	77
124	Tin nanoparticles embedded in porous N-doped graphene-like carbon network as high-performance anode material for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2017 , 699, 730-737	5.7	27
123	Flexible Graphene-Based Composite Films for Supercapacitors with Tunable Areal Capacitance. <i>Electrochimica Acta</i> , 2017 , 235, 233-241	6.7	16
122	Three-dimensional porous graphene-encapsulated CNT@SnO2 composite for high-performance lithium and sodium storage. <i>Electrochimica Acta</i> , 2017 , 230, 212-221	6.7	77
121	Three-dimensional porous carbon-coated graphene composite as high-stable and long-life anode for sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2017 , 316, 645-654	14.7	41
120	A wearable microwave absorption cloth. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2432-2441	7.1	74
119	Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode. <i>Advanced Functional Materials</i> , 2017 , 27, 1700348	15.6	500
118	Research and application progress on key materials for sodium-ion batteries. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 986-1006	5.8	55
117	A free-standing and thermostable polymer/plastic crystal electrolyte for all-solid-state lithium batteries. <i>Ionics</i> , 2017 , 23, 3339-3345	2.7	5
116	Graphene and polydopamine double-wrapped porous carbon-sulfur cathode materials for lithium-sulfur batteries with high capacity and cycling stability. <i>Ionics</i> , 2017 , 23, 3329-3337	2.7	3
115	Graphene highly scattered in porous carbon nanofibers: a binder-free and high-performance anode for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1698-1705	13	75
114	A simple strategy toward hierarchically porous graphene/nitrogen-rich carbon foams for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24178-24184	13	29
113	Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries. <i>Energy Storage Materials</i> , 2017 , 9, 170-178	19.4	103

(2015-2017)

1	12	Hierarchical porous NiCo2S4-rGO composites for high-performance supercapacitors. <i>Electrochimica Acta</i> , 2017 , 249, 1-8	6.7	78
1	11	Batteries: Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode (Adv. Funct. Mater. 24/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	4
1	10	MOF-derived CoSe2 microspheres with hollow interiors as high-performance electrocatalysts for the enhanced oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15310-15314	13	123
1	.09	Enhanced Interface Stability of Polymer Electrolytes Using Organic Cage-Type Cucurbit[6]uril for Lithium Metal Batteries. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A1834-A1840	3.9	15
1	08	Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. <i>Carbon</i> , 2017 , 111, 658-666	10.4	83
1	07	Graphene intercalated in graphene-like MoS2: A promising cathode for rechargeable Mg batteries. Journal of Power Sources, 2017 , 340, 104-110	8.9	54
1	06	Anisotropic Slippery Surfaces: Electric-Driven Smart Control of a Drop's Slide. <i>Advanced Materials</i> , 2016 , 28, 6999-7007	24	93
1	.05	Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. <i>Carbon</i> , 2016 , 100, 109-117	10.4	160
1	04	Biomass derivative/graphene aerogels for binder-free supercapacitors. <i>Energy Storage Materials</i> , 2016 , 3, 113-122	19.4	58
1	.03	Hierarchical porous reduced graphene oxide/SnO 2 networks as highly stable anodes for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 207, 9-15	6.7	57
1	02	Confined Porous Graphene/SnOx Frameworks within Polyaniline-Derived Carbon as Highly Stable Lithium-Ion Battery Anodes. <i>ACS Applied Materials & Description of the Confidence of the Confidence</i>	9.5	32
1	01	Double carbon decorated lithium titanate as anode material with high rate performance for lithium-ion batteries. <i>Progress in Natural Science: Materials International</i> , 2016 , 26, 283-288	3.6	8
1	.00	Surfactant-mediated synthesis of ZnCo2O4 powders as a high-performance anode material for Li-ion batteries. <i>Ionics</i> , 2015 , 21, 623-628	2.7	8
9	9	Scalable fabrication of exceptional 3D carbon networks for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16104-16111	13	49
9)8	Flexible, high-voltage and free-standing composite polymer electrolyte membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for lithium-ion batteries. Journal of Membrane Science, 2015 , 492, 490-496	9.6	32
9	97	Effect of polyacrylonitrile on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes with interpenetrating crosslinked network for flexible lithium ion batteries. <i>Journal of Power Sources</i> , 2015 , 295, 139-148	8.9	35
9)6	Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes for high-voltage lithium-ion batteries. <i>Journal of Membrane Science</i> , 2015 , 486, 21-28	9.6	60
9	95	Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. <i>Carbon</i> , 2015 , 93, 151-160	10.4	171

94	Alcohol-dependent environments for fabricating graphene aerogels toward supercapacitors. <i>Electrochimica Acta</i> , 2015 , 173, 1-6	6.7	15
93	Interconnected TiOx/carbon hybrid framework incorporated silicon for stable lithium ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12709-12717	13	23
92	Engineering graphene aerogels with porous carbon of large surface area for flexible all-solid-state supercapacitors. <i>Electrochimica Acta</i> , 2015 , 165, 92-97	6.7	36
91	In situ electric-driven reversible switching of water-droplet adhesion on a superhydrophobic surface. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23699-23706	13	46
90	Tuning broadband microwave absorption via highly conductive Fe3O4/graphene heterostructural nanofillers. <i>Materials Research Bulletin</i> , 2015 , 72, 316-323	5.1	50
89	Highly stable GeOx@C coreBhell fibrous anodes for improved capacity in lithium-ion batteries. Journal of Materials Chemistry A, 2015 , 3, 19907-19912	13	31
88	Enhanced electrochemical performance of Li4Ti5O12 as anode material for lithium-ion batteries with different carbons as support. <i>Journal of Alloys and Compounds</i> , 2015 , 646, 189-194	5.7	22
87	Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries. <i>ACS Applied Materials & Acs Applied Materials & Acs Applied</i>	9.5	116
86	Facile Fabrication of Binder-free Metallic Tin Nanoparticle/Carbon Nanofiber Hybrid Electrodes for Lithium-ion Batteries. <i>Electrochimica Acta</i> , 2015 , 153, 468-475	6.7	43
85	Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2097-2107	13	162
84	Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. <i>Carbon</i> , 2015 , 82, 337-345	10.4	104
83	Improving electrochemical performance of spherical LiMn2O4 cathode materials for lithium ion batteries by Al-F codoping and AlF3 surface coating. <i>Jonics</i> , 2015 , 21, 27-35	2.7	18
82	Three-Dimensional Interconnected Network of Graphene-Wrapped Silicon/Carbon Nanofiber Hybrids for Binder-Free Anodes in Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2015 , 2, 1699-1706	4.3	39
81	High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors. <i>Scientific Reports</i> , 2015 , 5, 15388	4.9	38
80	Enhanced rate performance of lithium titanium oxide anode material by bromine doping. <i>Ionics</i> , 2015 , 21, 3169-3176	2.7	13
79	Synthesis of TiOx Nanotubular Arrays with Oxygen Defects as High-Performance Anodes for Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2015 , 2, 421-426	4.3	19
78	A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors. <i>ACS Applied Materials & Distriction</i> , 100 (1997), 100 (9.5	57
77	Effect of alumina on triethylene glycol diacetate-2-propenoic acid butyl ester composite polymer electrolytes for flexible lithium ion batteries. <i>Journal of Power Sources</i> , 2015 , 279, 405-412	8.9	39

(2013-2014)

76	Nano-scale and micron-scale manganese dioxide vs corresponding paraffin composites for electromagnetic interference shielding and microwave absorption. <i>Materials Research Bulletin</i> , 2014 , 51, 277-286	5.1	18
75	Facile fabrication of safe and robust polyimide fibrous membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester gel electrolytes for lithium-ion batteries. <i>Electrochimica Acta</i> , 2014 , 149, 176-185	6.7	23
74	Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. <i>Nanoscale</i> , 2014 , 6, 3138-42	7.7	112
73	Rational design of graphene/porous carbon aerogels for high-performance flexible all-solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10895-10903	13	93
72	Two-dimensional Ti3C2 as anode material for Li-ion batteries. <i>Electrochemistry Communications</i> , 2014 , 47, 80-83	5.1	316
71	Beta-manganese dioxide nanorods for sufficient high-temperature electromagnetic interference shielding in X-band. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 116, 1779-1783	2.6	23
70	Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries. <i>Electrochimica Acta</i> , 2014 , 132, 538-544	6.7	87
69	Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. <i>Carbon</i> , 2014 , 77, 130-142	10.4	242
68	Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5057-5064	7.1	138
67	Interfacial engineering of carbon nanofiber-graphene-carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks. <i>ACS Applied Materials & Distriction (Control of the Control of the Co</i>	-23	163
66	Three-Dimensional Porous CarbonBilicon Frameworks as High-Performance Anodes for Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2014 , 1, 2124-2130	4.3	31
65	Hydrothermal synthesis of graphene/nickel oxide nanocomposites used as the electrode for supercapacitors. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 4976-81	1.3	11
64	Ordered Honeycomb Structure Surface Generated by Breath Figures for Liquid Reprography. <i>Advanced Functional Materials</i> , 2014 , 24, 7241-7248	15.6	42
63	Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. <i>Carbon</i> , 2014 , 66, 67-76	10.4	409
62	A strategy for scalable synthesis of Li4Ti5O12/reduced graphene oxide toward high rate lithium-ion batteries. <i>Electrochemistry Communications</i> , 2014 , 40, 1-4	5.1	48
61	Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries. <i>Journal of Power Sources</i> , 2014 , 249, 392-396	8.9	33
60	Silicon/carbon nanocomposites used as anode materials for lithium-ion batteries. <i>Ionics</i> , 2013 , 19, 1545-	-125749	17
59	Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 244, 570-574	8.9	73

58	Preparation and supercapacitor application of the single crystal nickel hydroxide and oxide nanosheets. <i>Materials Research Bulletin</i> , 2013 , 48, 3518-3526	5.1	22
57	Preparation and performance of a non-ionic plastic crystal electrolyte with the addition of polymer for lithium ion batteries. <i>Electrochimica Acta</i> , 2013 , 114, 720-725	6.7	28
56	Effect of nitrogen on the electrochemical performance of corellhell structured Si/C nanocomposites as anode materials for Li-ion batteries. <i>Electrochimica Acta</i> , 2013 , 89, 394-399	6.7	50
55	Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization. <i>Electrochimica Acta</i> , 2013 , 89, 334-338	6.7	41
54	Effects of fluorine substitution on the electrochemical performance of layered Li-excess nickel manganese oxides cathode materials for lithium-ion batteries. <i>Electrochimica Acta</i> , 2013 , 113, 407-411	6.7	23
53	Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries. <i>Nanoscale</i> , 2013 , 5, 2164-8	7.7	68
52	Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. <i>Nanotechnology</i> , 2013 , 24, 115708	3.4	77
51	Improved dielectric properties and highly efficient and broadened bandwidth electromagnetic attenuation of thickness-decreased carbon nanosheet/wax composites. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1846	7.1	90
50	Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. <i>Electrochimica Acta</i> , 2013 , 105, 299-304	6.7	132
49	Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. <i>Electrochimica Acta</i> , 2012 , 63, 363-368	6.7	187
48	Low temperature hydrothermal synthesis of nano-sized manganese oxide for supercapacitors. <i>Electrochimica Acta</i> , 2012 , 66, 302-305	6.7	46
47	In situ synthesis of TiO2graphene nanosheets composites as anode materials for high-power lithium ion batteries. <i>Electrochimica Acta</i> , 2012 , 69, 328-333	6.7	58
46	Facile synthesis of ordered porous Si@C nanorods as anode materials for Li-ion batteries. <i>Electrochimica Acta</i> , 2012 , 71, 194-200	6.7	120
45	Interweaved Si@SiOx/C nanoporous spheres as anode materials for Li-ion batteries. <i>Solid State Ionics</i> , 2012 , 220, 1-6	3.3	47
44	Nano-Li4Ti5O12 anchored on carbon nanotubes by liquid phase deposition as anode material for high rate lithium-ion batteries. <i>Journal of Power Sources</i> , 2012 , 214, 195-199	8.9	82
43	Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries. <i>Journal of Power Sources</i> , 2012 , 219, 29-35	8.9	115
42	The effect of reduction time on the surface functional groups and supercapacitive performance of graphene nanosheets. <i>Carbon</i> , 2012 , 50, 3724-3730	10.4	59
41	LiFePO4/Porous Carbon Nanocomposite Cathode Material for Lithium Ion Batteries. <i>Materials Science Forum</i> , 2012 , 722, 11-16	0.4	1

(2008-2012)

40	Ordered Macroporous Carbon/Polyaniline Nanocomposites as Electrode Materials for Supercapacitors. <i>Materials Science Forum</i> , 2012 , 722, 25-30	0.4	
39	Synthesis of SnO2 nanorods and hollow spheres and their electrochemical properties as anode materials for lithium ion batteries. <i>Materials Technology</i> , 2012 , 27, 191-195	2.1	16
38	Poly(vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly(vinyl alcohol) composite hydrogels. <i>Composites Part A: Applied Science and Manufacturing</i> , 2011 , 42, 1398-1405	8.4	64
37	Self-supporting Si/Reduced Graphene Oxide nanocomposite films as anode for lithium ion batteries. <i>Electrochemistry Communications</i> , 2011 , 13, 1332-1335	5.1	122
36	Studies on lithium bis(oxalato)-borate/propylene carbonate-based electrolytes for Li-ion batteries. <i>Ionics</i> , 2011 , 17, 491-494	2.7	18
35	Facile conversion of silicon nitride nanobelts into sandwich-like nanosaws II: growth mechanism and optical properties. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 98, 321-326	2.6	
34	Electrodeposition of platinum on tourmaline and application as an electrocatalyst for oxidation of methanol. <i>Ionics</i> , 2010 , 16, 33-38	2.7	7
33	Density functional theory studies on the B-containing lithium salts. <i>Ionics</i> , 2010 , 16, 509-513	2.7	14
32	Self-wound composite nanomembranes as electrode materials for lithium ion batteries. <i>Advanced Materials</i> , 2010 , 22, 4591-5	24	92
31	Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. <i>Advanced Materials</i> , 2010 , 22, 5202-6	24	789
30	A Raman spectroscopy investigation of the interactions of LiBOB with BL as electrolyte for advanced lithium batteries. <i>Journal of Power Sources</i> , 2010 , 195, 4285-4289	8.9	17
29	Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. <i>Electrochimica Acta</i> , 2010 , 56, 964-968	6.7	183
28	Porous polyaniline exhibits highly enhanced electrochemical capacitance performance. <i>Electrochimica Acta</i> , 2010 , 55, 5819-5822	6.7	70
27	All-solid-state polymer electrolyte with plastic crystal materials for rechargeable lithium-ion battery. <i>Journal of Power Sources</i> , 2009 , 189, 775-778	8.9	68
26	Facile conversion of silicon nitride nanobelts into sandwich-like nanosaws: towards functional nanostructured materials. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 97, 729-734	2.6	8
25	Gel-based composite polymer electrolytes with novel hierarchical mesoporous silica network for lithium batteries. <i>Electrochimica Acta</i> , 2008 , 53, 8001-8007	6.7	32
24	Synthesis of ZnS/dravite composite and its photocatalytic activity on degradation of methylene blue. <i>Solid State Ionics</i> , 2008 , 179, 1387-1390	3.3	13
23	Enhanced ionic conductivities in composite polymer electrolytes by using succinonitrile as a plasticizer. <i>Solid State Ionics</i> , 2008 , 179, 1772-1775	3.3	51

22	Temperature dependent ionic transport properties in composite solid polymer electrolytes. <i>Solid State Ionics</i> , 2008 , 179, 1310-1313	3.3	12
21	An improved method for chemical bath deposition of ZnS thin films. <i>Chemical Physics Letters</i> , 2008 , 462, 84-87	2.5	50
20	Ionic transport behavior in poly(ethylene oxide)poly(propylene oxide)poly(ethylene oxide) and LiClO4 complex. <i>Electrochimica Acta</i> , 2008 , 53, 2448-2452	6.7	21
19	Succinonitrile as a Versatile Additive for Polymer Electrolytes. <i>Advanced Functional Materials</i> , 2007 , 17, 2800-2807	15.6	181
18	High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support. <i>Advanced Functional Materials</i> , 2007 , 17, 3083-3087	15.6	389
17	High-performance polypyrrole electrode materials for redox supercapacitors. <i>Electrochemistry Communications</i> , 2006 , 8, 937-940	5.1	354
16	Composite effects in poly(ethylene oxide) Euccinonitrile based all-solid electrolytes. <i>Electrochemistry Communications</i> , 2006 , 8, 1753-1756	5.1	111
15	Study of thermal and dielectric behavior of low-density polyethylene composites reinforced with zinc oxide whisker. <i>Magyar Apr ad Kalemayek</i> , 2003 , 71, 635-641	O	7
14	Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. <i>Solid State Ionics</i> , 2003 , 164, 81-86	3.3	125
13	Dielectric properties and morphologies of composites filled with whisker and nanosized zinc oxide. <i>Materials Research Bulletin</i> , 2003 , 38, 499-507	5.1	67
12	Study on dielectric behavior of a three-phase CF/(PVDF + BaTiO3) composite. <i>Chemical Physics Letters</i> , 2003 , 369, 95-100	2.5	83
11	Thermal, electrical and mechanical properties of (PEO)16LiClO4 electrolytes with modified montmorillonites. <i>Chemical Physics Letters</i> , 2003 , 369, 698-702	2.5	40
10	Dielectric behavior of Li and Ti co-doped NiO/PVDF composites. <i>Chemical Physics Letters</i> , 2003 , 376, 38	9-21994	84
9	Preparation of nanosized ZnO and dielectric properties of composites filled with nanosized ZnO. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 99, 386-389	3.1	45
8	Effect of nanosized ZnO on the electrical properties of (PEO)16LiClO4 electrolytes. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 99, 340-343	3.1	69
7	Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 103, 140-144	3.1	101
6	Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. <i>Physical Review Letters</i> , 2003 , 91, 266104	7.4	185
5	Dielectric properties of carbon fiber filled low-density polyethylene. <i>Journal of Applied Physics</i> , 2003 , 93, 5543-5545	2.5	60

LIST OF PUBLICATIONS

4	Effect of modified montmorillonites on the ionic conductivity of (PEO)16LiClO4 electrolytes. <i>Electrochimica Acta</i> , 2002 , 47, 3541-3544	6.7	49
3	Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. <i>Electrochimica Acta</i> , 2002 , 48, 205-209	6.7	111
2	Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. <i>Information Materilly</i> ,	23.1	9
1	Tailoring inorganicpolymer composites for the mass production of solid-state batteries. <i>Nature Reviews Materials</i> ,	73.3	82