Jun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8267906/publications.pdf Version: 2024-02-01

Ιυν Ζηνο

#	Article	IF	CITATIONS
1	Operando Formation of Van der Waals Heterostructures for Achieving Macroscale Superlubricity on Engineering Rough and Worn Surfaces. Advanced Functional Materials, 2022, 32, .	7.8	31
2	Coupling effect of boundary tribofilm and hydrodynamic film. Cell Reports Physical Science, 2022, 3, 100778.	2.8	6
3	Synthesis of novel CuO@Graphene nanocomposites for lubrication application via a convenient and economical method. Wear, 2022, 498-499, 204323.	1.5	5
4	High-quality ultra-flat reduced graphene oxide nanosheets with super-robust lubrication performances. Chemical Engineering Journal, 2022, 438, 135620.	6.6	19
5	The Tribological Performance of Metal-/Resin-Impregnated Graphite under Harsh Condition. Lubricants, 2022, 10, 2.	1.2	6
6	Using Green, Economical, Efficient Two-Dimensional (2D) Talc Nanosheets as Lubricant Additives under Harsh Conditions. Nanomaterials, 2022, 12, 1666.	1.9	6
7	An investigation on the tribological behaviors of steel/copper and steel/steel friction pairs via lubrication with a graphene additive. Friction, 2021, 9, 228-238.	3.4	33
8	Influence of a carbon-based tribofilm induced by the friction temperature on the tribological properties of impregnated graphite sliding against a cemented carbide. Friction, 2021, 9, 686-696.	3.4	26
9	Improvement of the lubrication properties of grease with Mn3O4/graphene (Mn3O4#G) nanocomposite additive. Friction, 2021, 9, 1361-1377.	3.4	23
10	Nanolubricant additives: A review. Friction, 2021, 9, 891-917.	3.4	124
11	In situ synthesis of Mn3O4/graphene nanocomposite and its application as a lubrication additive at high temperatures. Applied Surface Science, 2021, 546, 149019.	3.1	27
12	Real-Time and Online Lubricating Oil Condition Monitoring Enabled by Triboelectric Nanogenerator. ACS Nano, 2021, 15, 11869-11879.	7.3	56
13	Efficient one-pot synthesis of mussel-inspired Cu-doped polydopamine nanoparticles with enhanced lubrication under heavy loads. Chemical Engineering Journal, 2021, 426, 131287.	6.6	23
14	Two-dimensional (2D) graphene nanosheets as advanced lubricant additives: A critical review and prospect. Materials Today Communications, 2021, 29, 102755.	0.9	28
15	Optimization of groove texture profile to improve hydrodynamic lubrication performance: Theory and experiments. Friction, 2020, 8, 83-94.	3.4	65
16	Ultrastable Lubricating Properties of Robust Self-Repairing Tribofilms Enabled by in Situ-Assembled Polydopamine Nanoparticles. Langmuir, 2020, 36, 852-861.	1.6	31
17	Dry gas seal performance analysis using a hydrodynamic and hydrostatic pressure decoupling method: Part 1. Sealing Technology, 2020, 2020, 4-9.	0.2	0
18	Dry gas seal performance analysis using a hydrodynamic and hydrostatic pressure decoupling method: Part 2. Sealing Technology, 2020, 2020, 4-9.	0.2	0

Jun Zhao

#	Article	IF	CITATIONS
19	Superhigh-exfoliation graphene with a unique two-dimensional (2D) microstructure for lubrication application. Applied Surface Science, 2020, 513, 145608.	3.1	30
20	In Situ Green Synthesis of the New Sandwichlike Nanostructure of Mn ₃ O ₄ /Graphene as Lubricant Additives. ACS Applied Materials & Interfaces, 2019, 11, 36931-36938.	4.0	55
21	A novel route to the synthesis of an Fe ₃ O ₄ /h-BN 2D nanocomposite as a lubricant additive. RSC Advances, 2019, 9, 6583-6588.	1.7	31
22	Friction-induced nano-structural evolution of graphene as a lubrication additive. Applied Surface Science, 2018, 434, 21-27.	3.1	175
23	Influence of the micromorphology of reduced graphene oxide sheets on lubrication properties as a lubrication additive. Tribology International, 2018, 119, 614-621.	3.0	60
24	Influence of annealing on the tribological properties of Zr-based bulk metallic glass. Journal of Non-Crystalline Solids, 2018, 481, 94-97.	1.5	19
25	Mild thermal reduction of graphene oxide as a lubrication additive for friction and wear reduction. RSC Advances, 2017, 7, 1766-1770.	1.7	41
26	Numerical optimization of the groove texture bottom profile for thrust bearings. Tribology International, 2017, 109, 69-77.	3.0	47
27	Synthesis of thermally reduced graphite oxide in sulfuric acid and its application as an efficient lubrication additive. Tribology International, 2017, 116, 303-309.	3.0	58
28	The tribological behaviors between fullerene-like hydrogenated carbon films produced on Si substrates, steel and Si 3 N 4 balls. Tribology International, 2017, 115, 518-524.	3.0	4
29	Highly Exfoliated Reduced Graphite Oxide Powders as Efficient Lubricant Oil Additives. Advanced Materials Interfaces, 2016, 3, 1600700.	1.9	59
30	An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications. Tribology International, 2016, 97, 14-20.	3.0	193
31	Medium ion energy synthesis of hard elastic fullerene-like hydrogenated carbon film with ultra-low friction and wear in humid air. Materials Letters, 2015, 143, 188-190.	1.3	9