Marc W Slutzky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8267850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noninvasively recorded high-gamma signals improve synchrony of force feedback in a novel neurorehabilitation brain–machine interface for brain injury. Journal of Neural Engineering, 2022, 19, 036024.	1.8	3
2	Myoelectric interface training enables targeted reduction in abnormal muscle co-activation. Journal of NeuroEngineering and Rehabilitation, 2022, 19, .	2.4	9
3	Wearable myoelectric interface enables highâ€dose, homeâ€based training in severely impaired chronic stroke survivors. Annals of Clinical and Translational Neurology, 2021, 8, 1895-1905.	1.7	10
4	Memory Reactivation during Sleep Improves Execution of a Challenging Motor Skill. Journal of Neuroscience, 2021, 41, 9608-9616.	1.7	6
5	Portable, open-source solutions for estimating wrist position during reaching in people with stroke. Scientific Reports, 2021, 11, 22491.	1.6	11
6	Refinement of High-Gamma EEG Features From TBI Patients With Hemicraniectomy Using an ICA Informed by Simulated Myoelectric Artifacts. Frontiers in Neuroscience, 2020, 14, 599010.	1.4	3
7	Increasing power efficiency. Nature Biomedical Engineering, 2020, 4, 937-938.	11.6	2
8	Electromyogram (EMG) Removal by Adding Sources of EMG (ERASE)—A Novel ICA-Based Algorithm for Removing Myoelectric Artifacts From EEG. Frontiers in Neuroscience, 2020, 14, 597941.	1.4	15
9	The Representation of Finger Movement and Force in Human Motor and Premotor Cortices. ENeuro, 2020, 7, ENEURO.0063-20.2020.	0.9	15
10	Towards Speech Synthesis from Intracranial Signals. Springer Briefs in Electrical and Computer Engineering, 2020, , 47-54.	0.3	0
11	Brain-Machine Interfaces: Powerful Tools for Clinical Treatment and Neuroscientific Investigations. Neuroscientist, 2019, 25, 139-154.	2.6	51
12	Hemicraniectomy in Traumatic Brain Injury: A Noninvasive Platform to Investigate High Gamma Activity for Brain Machine Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1467-1472.	2.7	16
13	Myoelectric Computer Interface Training for Reducing Co-Activation and Enhancing Arm Movement in Chronic Stroke Survivors: A Randomized Trial. Neurorehabilitation and Neural Repair, 2019, 33, 284-295.	1.4	30
14	Speech synthesis from ECoG using densely connected 3D convolutional neural networks. Journal of Neural Engineering, 2019, 16, 036019.	1.8	138
15	Articles from the Seventh International Brain-Computer Interface Meeting. Brain-Computer Interfaces, 2019, 6, 103-105.	0.9	3
16	Generating Natural, Intelligible Speech From Brain Activity in Motor, Premotor, and Inferior Frontal Cortices. Frontiers in Neuroscience, 2019, 13, 1267.	1.4	76
17	Differential Representation of Articulatory Gestures and Phonemes in Precentral and Inferior Frontal Gyri. Journal of Neuroscience, 2018, 38, 9803-9813.	1.7	62
18	Response to "Contribution of EEG signals to brain-machine interfaces― Journal of Neurophysiology, 2018, 119, 763-763.	0.9	0

MARC W SLUTZKY

#	Article	IF	CITATIONS
19	Emergent coordination underlying learning to reach to grasp with a brain-machine interface. Journal of Neurophysiology, 2018, 119, 1291-1304.	0.9	8
20	Continuous decoding of human grasp kinematics using epidural and subdural signals. Journal of Neural Engineering, 2017, 14, 016005.	1.8	64
21	Physiological properties of brain-machine interface input signals. Journal of Neurophysiology, 2017, 118, 1329-1343.	0.9	38
22	Changes in cortical network connectivity with long-term brain-machine interface exposure after chronic amputation. Nature Communications, 2017, 8, 1796.	5.8	19
23	Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Frontiers in Neuroscience, 2016, 10, 584.	1.4	121
24	Long-Term Stability of Motor Cortical Activity: Implications for Brain Machine Interfaces and Optimal Feedback Control. Journal of Neuroscience, 2016, 36, 3623-3632.	1.7	80
25	Brain machine interfaces: state of the art and challenges to translation. Neurobiology of Disease, 2015, 83, 152-153.	2.1	0
26	Brain–machine interfaces in neurorehabilitation of stroke. Neurobiology of Disease, 2015, 83, 172-179.	2.1	256
27	Direct classification of all American English phonemes using signals from functional speech motor cortex. Journal of Neural Engineering, 2014, 11, 035015.	1.8	149
28	Cortical encoding of phonemic context during word production. , 2014, 2014, 6790-3.		11
29	Extracting kinetic information from human motor cortical signals. NeuroImage, 2014, 101, 695-703.	2.1	84
30	Reducing Abnormal Muscle Coactivation After Stroke Using a Myoelectric-Computer Interface. Neurorehabilitation and Neural Repair, 2014, 28, 443-451.	1.4	55
31	Long term, stable brain machine interface performance using local field potentials and multiunit spikes. Journal of Neural Engineering, 2013, 10, 056005.	1.8	167
32	Accurate decoding of reaching movements from field potentials in the absence of spikes. Journal of Neural Engineering, 2012, 9, 046006.	1.8	182
33	Local field potentials allow accurate decoding of muscle activity. Journal of Neurophysiology, 2012, 108, 18-24.	0.9	77
34	Decoding muscle activity with local field potentials. , 2011, , .		2
35	Decoding the rat forelimb movement direction from epidural and intracortical field potentials. Journal of Neural Engineering, 2011, 8, 036013.	1.8	54
36	Statistical assessment of the stability of neural movement representations. Journal of Neurophysiology, 2011, 106, 764-774.	0.9	67

3

MARC W SLUTZKY

#	Article	IF	CITATIONS
37	A new rodent behavioral paradigm for studying forelimb movement. Journal of Neuroscience Methods, 2010, 192, 228-232.	1.3	17
38	Optimal spacing of surface electrode arrays for brain–machine interface applications. Journal of Neural Engineering, 2010, 7, 026004.	1.8	152
39	Optimal spatial resolution of epidural and subdural electrode arrays for brain-machine interface applications. , 2008, 2008, 3771-4.		3
40	Real-Time Control of the Hand by Intracortically Controlled Functional Neuromuscular Stimulation. , 2007, , .		9
41	Use of Intracortical Recordings to Control a Hand Neuroprosthesis. , 2007, , .		3
42	Manipulating epileptiform bursting in the rat hippocampus using chaos control and adaptive techniques. IEEE Transactions on Biomedical Engineering, 2003, 50, 559-570.	2.5	35
43	Identification of determinism in noisy neuronal systems. Journal of Neuroscience Methods, 2002, 118, 153-161.	1.3	11
44	Deterministic Chaos and Noise in Three In Vitro Hippocampal Models of Epilepsy. Annals of Biomedical Engineering, 2001, 29, 607-618.	1.3	37