Jon T Njardarson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8267060/publications.pdf

Version: 2024-02-01

81839 45285 10,934 84 39 90 citations h-index g-index papers 100 100 100 9997 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. Journal of Medicinal Chemistry, 2014, 57, 10257-10274.	2.9	3,996
2	Data-Mining for Sulfur and Fluorine: An Evaluation of Pharmaceuticals To Reveal Opportunities for Drug Design and Discovery. Journal of Medicinal Chemistry, 2014, 57, 2832-2842.	2.9	1,080
3	A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. Journal of Chemical Education, 2010, 87, 1348-1349.	1.1	782
4	Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Topics in Current Chemistry, 2018, 376, 5.	3.0	567
5	Tumor Targeting with Antibody-Functionalized, Radiolabeled Carbon Nanotubes. Journal of Nuclear Medicine, 2007, 48, 1180-1189.	2.8	414
6	Recent Advances in the Metal-Catalyzed Ring Expansions of Three- and Four-Membered Rings. ACS Catalysis, 2013, 3, 272-286.	5.5	278
7	Beyond C, H, O, and N! Analysis of the Elemental Composition of U.S. FDA Approved Drug Architectures. Journal of Medicinal Chemistry, 2014, 57, 9764-9773.	2.9	238
8	From Oxiranes to Oligomers: Architectures of U.S. FDA Approved Pharmaceuticals Containing Oxygen Heterocycles. Journal of Medicinal Chemistry, 2018, 61, 10996-11020.	2.9	222
9	PET Imaging of Soluble Yttrium-86-Labeled Carbon Nanotubes in Mice. PLoS ONE, 2007, 2, e907.	1.1	169
10	The Migrastatin Family:Â Discovery of Potent Cell Migration Inhibitors by Chemical Synthesis. Journal of the American Chemical Society, 2004, 126, 11326-11337.	6.6	168
11	A Survey of the Structures of US FDA Approved Combination Drugs. Journal of Medicinal Chemistry, 2019, 62, 4265-4311.	2.9	164
12	Discovery of Potent Cell Migration Inhibitors through Total Synthesis:  Lessons from Structureâ^'Activity Studies of (+)-Migrastatin. Journal of the American Chemical Society, 2004, 126, 1038-1040.	6.6	161
13	Synthetic analogues of migrastatin that inhibit mammary tumor metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3772-3776.	3.3	153
14	Highly Concise Routes to Epothilones:Â The Total Synthesis and Evaluation of Epothilone 490. Journal of the American Chemical Society, 2002, 124, 9825-9832.	6.6	113
15	The Total Synthesis of (+)-Migrastatin. Journal of the American Chemical Society, 2003, 125, 6042-6043.	6.6	103
16	Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials. Journal of the American Chemical Society, 2022, 144, 5-22.	6.6	91
17	Ring Expansions of Vinyloxiranes, -thiiranes, and -aziridines: Synthetic Approaches, Challenges, and Catalytic Success Stories. Journal of Organic Chemistry, 2013, 78, 9533-9540.	1.7	88
18	Synthetic efforts toward [3.3.1] bridged bicyclic phloroglucinol natural products. Tetrahedron, 2011, 67, 7631-7666.	1.0	85

#	Article	IF	CITATIONS
19	Creative approaches towards the synthesis of 2,5-dihydro- furans, thiophenes, and pyrroles. One method does not fit all!. Organic and Biomolecular Chemistry, 2009, 7, 1761.	1.5	81
20	Copper-Catalyzed Rearrangement of Vinyl Oxiranes. Journal of the American Chemical Society, 2006, 128, 16054-16055.	6.6	80
21	Catalytic Ring Expansion of Vinyl Oxetanes: Asymmetric Synthesis of Dihydropyrans Using Chiral Counterion Catalysis. Angewandte Chemie - International Edition, 2012, 51, 5675-5678.	7.2	77
22	Lewis Acid Catalyzed [1,3]-Sigmatropic Rearrangement of Vinyl Aziridines. Organic Letters, 2008, 10, 5023-5026.	2.4	75
23	A Concise Ringâ€Expansion Route to the Compact Core of Platensimycin. Angewandte Chemie - International Edition, 2009, 48, 8543-8546.	7.2	74
24	Reactive Dienes:  Intramolecular Aromatic Oxidation of 3-(2-Hydroxyphenyl)-propionic Acids. Organic Letters, 2002, 4, 493-496.	2.4	69
25	Highly Selective Copper-Catalyzed Ring Expansion of Vinyl Thiiranes:  Application to Synthesis of Biotin and the Heterocyclic Core of Plavix. Journal of the American Chemical Society, 2007, 129, 2768-2769.	6.6	69
26	Total Synthesis of Vinigrol. Angewandte Chemie - International Edition, 2013, 52, 8648-8651.	7.2	66
27	Stereospecific Ring Expansion of Chiral Vinyl Aziridines. Organic Letters, 2011, 13, 1110-1113.	2.4	64
28	Rapid Assembly of Vinigrol's Unique Carbocyclic Skeleton. Organic Letters, 2009, 11, 4492-4495.	2.4	60
29	The Art of Innovation in Organic Chemistry:Â Synthetic Efforts toward the Phomoidrides. Chemical Reviews, 2003, 103, 2691-2728.	23.0	54
30	Stereoselective Ring Expansion of Vinyl Oxiranes: Mechanistic Insights and Natural Product Total Synthesis. Angewandte Chemie - International Edition, 2010, 49, 1648-1651.	7.2	54
31	Intermolecular Oxonium Ylide Mediated Synthesis of Medium-Sized Oxacycles. Organic Letters, 2012, 14, 378-381.	2.4	54
32	Phenols in Pharmaceuticals: Analysis of a Recurring Motif. Journal of Medicinal Chemistry, 2022, 65, 7044-7072.	2.9	53
33	An Expeditious Approach toward the Total Synthesis of CP-263,114. Organic Letters, 2001, 3, 2435-2438.	2.4	51
34	Total Syntheses of [17]- and [18]Dehydrodesoxyepothilones B via a Concise Ring-Closing Metathesis-Based Strategy:Â Correlation of Ring Size with Biological Activity in the Epothilone Series. Journal of Organic Chemistry, 2002, 67, 7737-7740.	1.7	50
35	Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Topics in Current Chemistry Collections, 2019, , 1-34.	0.2	46
36	Emergence of potent inhibitors of metastasis in lung cancer via syntheses based on migrastatin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15074-15078.	3.3	45

#	Article	IF	Citations
37	Synthesis of allylic and homoallylic alcohols from unsaturated cyclic ethers using a mild and selective C–O reduction approach. Chemical Communications, 2012, 48, 7844.	2.2	43
38	Evolution of a Synthetic Approach to CP-263,114. Organic Letters, 2001, 3, 2431-2434.	2.4	42
39	Asymmetric [3+2] Annulation Approach to 3â€Pyrrolines: Concise Total Syntheses of (â°')â€Supinidine, (â°')â€Isoretronecanol, and (+)â€Elacomine. Angewandte Chemie - International Edition, 2015, 54, 13706-13710.	7.2	41
40	An In- <i>Pharm</i> -ative Educational Poster Anthology Highlighting the Therapeutic Agents That Chronicle Our Medicinal History. Journal of Chemical Education, 2013, 90, 1403-1405.	1.1	40
41	An Adler–Becker oxidation approach to vinigrol. Tetrahedron Letters, 2009, 50, 1684-1686.	0.7	38
42	Catalytic Ring Expansion Adventures. Synlett, 2013, 24, 787-803.	1.0	37
43	Evolution of an oxidative dearomatization enabled total synthesis of vinigrol. Organic and Biomolecular Chemistry, 2014, 12, 330-344.	1.5	37
44	Metalâ€Free Synthesis of Fluorinated Indoles Enabled by Oxidative Dearomatization. Angewandte Chemie - International Edition, 2016, 55, 2243-2247.	7.2	35
45	The strategic marriage of method and motif. Total synthesis of varitriol. Tetrahedron, 2010, 66, 4832-4840.	1.0	34
46	An efficient oxidative dearomatization–radical cyclization approach to symmetrically substituted bicyclic guttiferone natural products. Chemical Communications, 2011, 47, 209-211.	2.2	33
47	New mechanistic insights into the copper catalyzed ring expansion of vinyl aziridines: evidence in support of a copper(i) mediated pathway. Chemical Science, 2012, 3, 3321.	3.7	31
48	Mechanism and the Origins of Stereospecificity in Copper-Catalyzed Ring Expansion of Vinyl Oxiranes: A Traceless Dual Transition-Metal-Mediated Process. Journal of the American Chemical Society, 2013, 135, 1471-1475.	6.6	30
49	Dearomatization Approach to 2-Trifluoromethylated Benzofuran and Dihydrobenzofuran Products. Organic Letters, 2017, 19, 3508-3511.	2.4	30
50	Application of phenolic oxidation chemistry in synthesis: preparation of the BCE ring system of ryanodine. Tetrahedron, 2003, 59, 8855-8858.	1.0	29
51	Syntheses and Structural Confirmations of Members of a Heterocycle ontaining Family of Labdane Diterpenoids. Angewandte Chemie - International Edition, 2013, 52, 1543-1547.	7.2	27
52	A Structural Analysis of the FDA Green Book-Approved Veterinary Drugs and Roles in Human Medicine. Journal of Medicinal Chemistry, 2020, 63, 15449-15482.	2.9	27
53	CP-263,114 synthetic studies. Construction of an isotwistane ring system via rhodium carbenoid C–H insertion. Tetrahedron, 2002, 58, 6545-6554.	1.0	26
54	New Class of Anion-Accelerated Amino-Cope Rearrangements as Gateway to Diverse Chiral Structures. Journal of the American Chemical Society, 2017, 139, 13141-13146.	6.6	26

#	Article	IF	CITATIONS
55	An Efficient Substrateâ€Controlled Approach Towards Hypoestoxide, a Member of a Family of Diterpenoid Natural Products with an Insideâ€Out [9.3.1]Bicyclic Core. Angewandte Chemie - International Edition, 2008, 47, 9450-9453.	7.2	22
56	Efficient Synthesis of Thiopyrans Using a Sulfurâ€Enabled Anionic Cascade. Angewandte Chemie - International Edition, 2012, 51, 1938-1941.	7.2	20
57	Base mediated deprotection strategies for trifluoroethyl (TFE) ethers, a new alcohol protecting group. Tetrahedron Letters, 2013, 54, 7080-7082.	0.7	18
58	Synthetic approaches and total syntheses of vinigrol, a unique diterpenoid. Tetrahedron, 2015, 71, 3775-3793.	1.0	18
59	Confirmation of the structures of synthetic derivatives of migrastatin in the light of recently disclosed crystallographically based claims. Tetrahedron Letters, 2010, 51, 3873-3875.	0.7	17
60	Asymmetric Vinylogous Aza-Darzens Approach to Vinyl Aziridines. Organic Letters, 2018, 20, 4942-4945.	2.4	14
61	A Scalable Rhodiumâ€Catalyzed Intermolecular Aziridination Reaction. Angewandte Chemie - International Edition, 2014, 53, 4278-4280.	7.2	12
62	Mild stereoselective formation of tri- and tetrasubstituted olefins by regioselective ring opening of 1,1-disubstituted vinyl oxiranes with dialkyl dithiophosphates. Tetrahedron Letters, 2014, 55, 3232-3234.	0.7	12
63	A Mild <i>meta</i> å€Selective C–H Alkylation of Catechol Monoâ€Ethers. European Journal of Organic Chemistry, 2016, 2016, 3679-3683.	1.2	12
64	Synthesis of 1,2,3,6-Tetrahydropyridines via Aminophosphate Enabled Anionic Cascade and Acid Catalyzed Cyclization Approaches. Organic Letters, 2015, 17, 4030-4033.	2.4	11
65	Double-Diels–Alder Approach to Maoecrystal V. Unexpected C–C Bond-Forming Fragmentations of the [2.2.2]-Bicyclic Core. Organic Letters, 2017, 19, 5316-5319.	2.4	11
66	Metalâ€Free Synthesis of Fluorinated Indoles Enabled by Oxidative Dearomatization. Angewandte Chemie, 2016, 128, 2283-2287.	1.6	10
67	Chemistry By Design: A Web-Based Educational Flashcard for Exploring Synthetic Organic Chemistry. Journal of Chemical Education, 2012, 89, 1080-1082.	1.1	9
68	[2.2.2]- to [3.2.1]-Bicycle Skeletal Rearrangement Approach to the Gibberellin Family of Natural Products. Organic Letters, 2018, 20, 2993-2996.	2.4	9
69	Dramatic Effect of \hat{I}^3 -Heteroatom Dienolate Substituents on Counterion Assisted Asymmetric Anionic Amino-Cope Reaction Cascades. Journal of the American Chemical Society, 2021, 143, 5793-5804.	6.6	9
70	Formation of fused aromatic architectures via an oxidative dearomatizationâ€"radical cyclization rearomatization approach. Tetrahedron Letters, 2015, 56, 3550-3552.	0.7	7
71	Anionic Cascade Routes to Sulfur and Nitrogen Heterocycles Originating from Thio―and Aminophosphate Precursors. European Journal of Organic Chemistry, 2016, 2016, 4249-4259.	1.2	7
72	Review of synthetic approaches toward maoecrystal V. Organic and Biomolecular Chemistry, 2018, 16, 4210-4222.	1.5	7

#	Article	IF	CITATIONS
73	Strategic Vinyl Sulfone Nucleophile \hat{l}^2 -Substitution Significantly Impacts Selectivity in Vinylogous Darzens and Aza-Darzens Reactions. Organic Letters, 2020, 22, 6917-6921.	2.4	7
74	A facile synthesis of \hat{l}_{\pm} -phosphono esters through methoxycarbonylation of \hat{l}_{\pm} -phosphono carbanions. Tetrahedron Letters, 1994, 35, 9071-9072.	0.7	6
75	Ring Expansions of Oxiranes and Oxetanes. Topics in Heterocyclic Chemistry, 2015, , 281-309.	0.2	6
76	Distinct biological effects of golgicide a derivatives on larval and adult mosquitoes. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5177-5181.	1.0	5
77	Mild Darzens Annulations for the Assembly of Trifluoromethylthiolated (SCF ₃) Aziridine and Cyclopropane Structures. Organic Letters, 2021, 23, 6121-6125.	2.4	5
78	Dienolate Annulation Approach for Assembly of Densely Substituted Aromatic Architectures. Journal of Organic Chemistry, 2021, 86, 10555-10567.	1.7	5
79	A Concise Synthetic Route to Pure Isomers of the Antifungal Agents (E)- and (Z)-1,2-Diaryl-3-(1-imidazolyl)-1-propenes Acta Chemica Scandinavica, 1995, 49, 423-427.	0.7	5
80	Thieme Chemistry Journal Awardees - Where are They Now? Efforts towards the Total Synthesis of Vinigrol. Synlett, 2009, 2009, 23-27.	1.0	4
81	Efforts Toward a Unified Kainoid Family Synthesis Approach: Unexpected Sulfinamideâ€Directed Conjugate Addition Results. Asian Journal of Organic Chemistry, 2019, 8, 1041-1044.	1.3	2
82	Pharmaceutical structure montages as catalysts for design and discovery. Future Medicinal Chemistry, 2012, 4, 951-954.	1.1	1
83	The Realization of an Oxidative Dearomatization–Intramolecular Diels–Alder Route to Vinigrol. Strategies and Tactics in Organic Synthesis, 2015, 11, 335-376.	0.1	1
84	Oxidative Route to Indoles via Intramolecular Amino-Hydroxylation of <i>o</i> -Allenyl Anilines. Journal of Organic Chemistry, 2021, 86, 10713-10723.	1.7	1