
Andrew D Miranker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8266533/publications.pdf

Version: 2024-02-01

ANDREW D MIDANKED

#	Article	IF	CITATIONS
1	Detection of transient protein folding populations by mass spectrometry. Science, 1993, 262, 896-900.	6.0	590
2	Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature, 1999, 401, 90-93.	13.7	408
3	Phospholipid Catalysis of Diabetic Amyloid Assembly. Journal of Molecular Biology, 2004, 341, 1175-1187.	2.0	328
4	Islet Amyloid:  Phase Partitioning and Secondary Nucleation Are Central to the Mechanism of Fibrillogenesis. Biochemistry, 2002, 41, 4694-4703.	1.2	302
5	Conserved and Cooperative Assembly of Membrane-Bound α-Helical States of Islet Amyloid Polypeptideâ€. Biochemistry, 2006, 45, 9496-9508.	1.2	295
6	Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16863-16868.	3.3	275
7	The Interplay of Catalysis and Toxicity by Amyloid Intermediates on Lipid Bilayers: Insights from Type II Diabetes. Annual Review of Biophysics, 2009, 38, 125-152.	4.5	211
8	Fiber-dependent amyloid formation as catalysis of an existing reaction pathway. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12341-12346.	3.3	199
9	Direct detection of transient α-helical states in islet amyloid polypeptide. Protein Science, 2007, 16, 110-117.	3.1	196
10	A native to amyloidogenic transition regulated by a backbone trigger. Nature Structural and Molecular Biology, 2006, 13, 202-208.	3.6	188
11	Investigation of protein folding by mass spectrometry. FASEB Journal, 1996, 10, 93-101.	0.2	175
12	Helix Stabilization Precedes Aqueous and Bilayer-Catalyzed Fiber Formation in Islet Amyloid Polypeptide. Journal of Molecular Biology, 2009, 393, 383-396.	2.0	170
13	Mechanistic Studies of the Folding of Human Lysozyme and the Origin of Amyloidogenic Behavior in Its Disease-Related Variants. Biochemistry, 1999, 38, 6419-6427.	1.2	165
14	Kidney dialysis-associated amyloidosis: a molecular role for copper in fiber formation. Journal of Molecular Biology, 2001, 309, 339-345.	2.0	162
15	Common mechanism unites membrane poration by amyloid and antimicrobial peptides. Proceedings of the United States of America, 2013, 110, 6382-6387.	3.3	157
16	Islet amyloid polypeptide demonstrates a persistent capacity to disrupt membrane integrity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9460-9465.	3.3	127
17	Oligomeric Assembly of Native-like Precursors Precedes Amyloid Formation by \hat{I}^2 -2 Microglobulin. Biochemistry, 2004, 43, 7808-7815.	1.2	121
18	Islet amyloid polypeptide: identification of long-range contacts and local order on the fibrillogenesis pathway 1 1Edited by F. Cohen. Journal of Molecular Biology, 2001, 308, 783-794.	2.0	120

ANDREW D MIRANKER

#	Article	IF	CITATIONS
19	Synthetic αâ€Helix Mimetics as Agonists and Antagonists of Islet Amyloid Polypeptide Aggregation. Angewandte Chemie - International Edition, 2010, 49, 736-739.	7.2	109
20	The Mechanism of Insulin Action on Islet Amyloid Polypeptide Fiber Formation. Journal of Molecular Biology, 2004, 335, 221-231.	2.0	105
21	Formation of a Copper Specific Binding Site in Non-Native States of β-2-Microglobulin. Biochemistry, 2002, 41, 10646-10656.	1.2	103
22	Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Protein Science, 1997, 6, 1316-1324.	3.1	90
23	A Peptidomimetic Approach to Targeting Pre-amyloidogenic States in Type II Diabetes. Chemistry and Biology, 2009, 16, 943-950.	6.2	88
24	A regulatable switch mediates self-association in an immunoglobulin fold. Nature Structural and Molecular Biology, 2008, 15, 965-971.	3.6	83
25	A common landscape for membraneâ€active peptides. Protein Science, 2013, 22, 870-882.	3.1	77
26	Concentrationâ€dependent transitions govern the subcellular localization of islet amyloid polypeptide. FASEB Journal, 2012, 26, 1228-1238.	0.2	76
27	Interaction of membraneâ€bound islet amyloid polypeptide with soluble and crystalline insulin. Protein Science, 2008, 17, 1850-1856.	3.1	73
28	Contribution of the intrinsic disulfide to the assembly mechanism of islet amyloid. Protein Science, 2009, 14, 231-239.	3.1	61
29	Foldamer-mediated manipulation of a pre-amyloid toxin. Nature Communications, 2016, 7, 11412.	5.8	56
30	Islet Amyloid-Induced Cell Death and Bilayer Integrity Loss Share a Molecular Origin Targetable with Oligopyridylamide-Based α-Helical Mimetics. Chemistry and Biology, 2015, 22, 369-378.	6.2	55
31	Amide inequivalence in the fibrillar assembly of islet amyloid polypeptide. Protein Engineering, Design and Selection, 2008, 21, 147-154.	1.0	52
32	Conformational switching within dynamic oligomers underpins toxic gain-of-function by diabetes-associated amyloid. Nature Communications, 2018, 9, 1312.	5.8	50
33	Single-Molecule Fluorescence Spectroscopy Using Phospholipid Bilayer Nanodiscs. Methods in Enzymology, 2010, 472, 89-117.	0.4	49
34	Cooperative Elements in Protein Folding Monitored by Electrospray Ionization Mass Spectrometry. Journal of the American Chemical Society, 1995, 117, 7548-7549.	6.6	47
35	Direct measurement of islet amyloid polypeptide fibrillogenesis by mass spectrometry. Protein Science, 2000, 9, 427-431.	3.1	47
36	A foldamer approach to targeting membrane bound helical states of islet amyloid polypeptide. Chemical Communications, 2013, 49, 4749.	2.2	42

ANDREW D MIRANKER

#	Article	IF	CITATIONS
37	Identification of N-linked glycans as specific mediators of neuronal uptake of acetylated α-Synuclein. PLoS Biology, 2019, 17, e3000318.	2.6	42
38	From chance to frequent encounters: Origins of β2-microglobulin fibrillogenesis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1753, 92-99.	1.1	40
39	Metal binding sheds light on mechanisms of amyloid assembly. Prion, 2009, 3, 1-4.	0.9	38
40	Formation of a Stable Oligomer of β-2 Microglobulin Requires only Transient Encounter with Cu(II). Journal of Molecular Biology, 2007, 367, 1-7.	2.0	37
41	A Membraneâ€Bound Antiparallel Dimer of Rat Islet Amyloid Polypeptide. Angewandte Chemie - International Edition, 2011, 50, 10859-10862.	7.2	37
42	Protein complexes and analysis of their assembly by mass spectrometry. Current Opinion in Structural Biology, 2000, 10, 601-606.	2.6	32
43	Characterization of Collapsed States in the Early Stages of the Refolding of Hen Lysozymeâ€. Biochemistry, 1998, 37, 8473-8480.	1.2	31
44	Amphiphilic oligoamide α-helix peptidomimetics inhibit islet amyloid polypeptide aggregation. Tetrahedron Letters, 2015, 56, 3670-3673.	0.7	31
45	Fiber-Dependent and -Independent Toxicity of Islet Amyloid Polypeptide. Biophysical Journal, 2014, 107, 2559-2566.	0.2	28
46	Data Sanitization to Reduce Private Information Leakage from Functional Genomics. Cell, 2020, 183, 905-917.e16.	13.5	28
47	Folded Small Molecule Manipulation of Islet Amyloid Polypeptide. Chemistry and Biology, 2014, 21, 775-781.	6.2	24
48	The Role of Prefibrillar Structures in the Assembly of a Peptide Amyloid. Journal of Molecular Biology, 2009, 393, 214-226.	2.0	22
49	Unzipping the mysteries of amyloid fiber formation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4335-4336.	3.3	20
50	Foldamer scaffolds suggest distinct structures are associated with alternative gains-of-function in a preamyloid toxin. Chemical Communications, 2016, 52, 6391-6394.	2.2	20
51	Delineating the Conformational Elements Responsible for Cu2+-Induced Oligomerization of β-2 Microglobulin. Biochemistry, 2009, 48, 6610-6617.	1.2	17
52	Small molecule screening in context: Lipid atalyzed amyloid formation. Protein Science, 2014, 23, 1341-1348.	3.1	15
53	Scope and utility of hydrogen exchange as a tool for mapping landscapes. Protein Science, 2007, 16, 2378-2390.	3.1	14
54	Targeting the Intrinsically Disordered Proteome Using Small-Molecule Ligands. Methods in Enzymology, 2018, 611, 703-734.	0.4	14

ANDREW D MIRANKER

#	Article	IF	CITATIONS
55	Structure-Based Small Molecule Modulation of a Pre-Amyloid State: Pharmacological Enhancement of IAPP Membrane-Binding and Toxicity. Biochemistry, 2015, 54, 3555-3564.	1.2	11
56	Recent Insight in Islet Amyloid Polypeptide Morphology, Structure, Membrane Interaction, and Toxicity in Type 2 Diabetes. Journal of Diabetes Research, 2016, 2016, 1-2.	1.0	11
57	Influence of the Human and Rat Islet Amyloid Polypeptides on Structure of Phospholipid Bilayers: Neutron Reflectometry and Fluorescence Microscopy Studies. Langmuir, 2016, 32, 4382-4391.	1.6	11
58	Fibres hinge on swapped domains. Nature, 2005, 437, 197-198.	13.7	7
59	Peptide Amyloid Surface Display. Biochemistry, 2015, 54, 987-993.	1.2	7
60	Mapping Protein Conformational Landscapes under Strongly Native Conditions with Hydrogen Exchange Mass Spectrometry. Journal of Physical Chemistry B, 2015, 119, 10016-10024.	1.2	7
61	p53 succumbs to peer pressure. Nature Chemical Biology, 2011, 7, 248-249.	3.9	5
62	STEM Climate survey developed through student–faculty collaboration. Teaching in Higher Education, 2021, 26, 65-80.	1.7	4
63	Quantitative Measurement of Fibrillogenesis by Mass Spectrometry. , 2005, 299, 185-194.		1
64	A solenoid design for assessing determinants of parallel Â-sheet registration. Protein Engineering, Design and Selection, 2015, 28, 577-583.	1.0	0