
Sivanandan S Harilal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8266399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatiotemporal evolution of emission and absorption signatures in a laser-produced plasma. Journal of Applied Physics, 2022, 131, .	1.1	14
2	Compositional partitioning during early stages of oxidation of a uranium-molybdenum alloy. Scripta Materialia, 2022, 212, 114528.	2.6	5
3	Dual-comb absorption spectroscopy of molecular CeO in a laser-produced plasma. Optics Letters, 2022, 47, 2502.	1.7	6
4	Oxidation in laser-generated metal plumes. Physics of Plasmas, 2022, 29, .	0.7	14
5	Multi-species temperature and number density analysis of a laser-produced plasma using dual-comb spectroscopy. Journal of Applied Physics, 2022, 131, .	1.1	8
6	Spectral dynamics and gas-phase oxidation of laser-produced plutonium plasmas. Journal of Analytical Atomic Spectrometry, 2021, 36, 150-156.	1.6	13
7	Time-resolved absorption spectroscopic characterization of ultrafast laser-produced plasmas under varying background pressures. Physical Review E, 2021, 103, 013213.	0.8	21
8	Simultaneous measurement of optical spectroscopic signatures from ultrafast laser-produced plasmas. , 2021, , .		0
9	Time-Resolved Multispecies Analysis of a Laser-Induced Plasma using Dual-Comb Spectroscopy. , 2021, , .		0
10	Laser-induced fluorescence of ultrafast laser filament generated plasmas for standoff detection. , 2021, , .		0
11	Hydrogen isotopic analysis of nuclear reactor materials using ultrafast laser-induced breakdown spectroscopy. Optics Express, 2021, 29, 4936.	1.7	18
12	Burst-mode dual-comb spectroscopy. Optics Letters, 2021, 46, 860.	1.7	14
13	Spectro-temporal comparisons of optical emission, absorption, and laser-induced fluorescence for characterizing ns and fs laser-produced plasmas. Plasma Sources Science and Technology, 2021, 30, 045007.	1.3	15
14	Laser ablation spectrometry for studies of uranium plasmas, reactor monitoring, and spent fuel safety. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 179, 106095.	1.5	22
15	Early- and late-time dynamics of laser-produced plasmas by combining emission and absorption spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 179, 106096.	1.5	21
16	Measurement of neutral gadolinium oscillator strengths using dual-comb absorption spectroscopy in laser-produced plasmas. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 181, 106199.	1.5	14
17	Optical spectroscopy and modeling of uranium gas-phase oxidation: Progress and perspectives. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 185, 106283.	1.5	26
18	Detection of hydrogen isotopes in Zircaloy-4 <i>via</i> femtosecond LIBS. Journal of Analytical Atomic Spectrometry, 2021, 36, 1217-1227.	1.6	12

#	Article	IF	CITATIONS
19	Spatio-temporal and spectrally resolved imaging analysis of hydrogen isotopes using ultrafast LIBS. , 2021, , .		0
20	Laser-induced fluorescence of filament-produced plasmas. Journal of Applied Physics, 2021, 130, .	1.1	11
21	The interplay between laser focusing conditions, expansion dynamics, ablation mechanisms, and emission intensity in ultrafast laser-produced plasmas. Journal of Applied Physics, 2021, 130, .	1.1	8
22	Unraveling Spatio-Temporal Chemistry Evolution in Laser Ablation Plumes and Its Relation to Initial Plasma Conditions. Analytical Chemistry, 2020, 92, 13839-13846.	3.2	17
23	Standoff detection of chemical plumes from high explosive open detonations using a swept-wavelength external cavity quantum cascade laser. Journal of Applied Physics, 2020, 128, .	1.1	10
24	The role of ambient gas confinement, plasma chemistry, and focusing conditions on emission features of femtosecond laser-produced plasmas. Journal of Analytical Atomic Spectrometry, 2020, 35, 1574-1586.	1.6	23
25	Expansion dynamics and chemistry evolution in ultrafast laser filament produced plasmas. Physical Chemistry Chemical Physics, 2020, 22, 8304-8314.	1.3	20
26	Standoff chemical plume detection in turbulent atmospheric conditions with a swept-wavelength external cavity quantum cascade laser. Optics Express, 2020, 28, 7408.	1.7	22
27	Pulse-Burst Generation for Single-Shot Time-Resolved Dual-Comb Spectroscopy of Laser-Induced Plasmas. , 2020, , .		Ο
28	Pulse Burst Mode Dual-Comb Spectroscopy for Time-Resolved Measurements of Laser-Induced Plasmas. , 2020, , .		0
29	High-Speed Standoff Chemical Plume Detection Using Swept-Wavelength External Cavity Quantum Cascade Lasers. , 2020, , .		0
30	Laser-Induced Fluorescence Spectroscopic Analysis of U and Pu Plasmas. , 2020, , .		0
31	Gas-Phase Molecular Formation in Actinide Laser-Produced Plasmas. , 2020, , .		Ο
32	Plume dynamics and gas-phase molecular formation in transient laser-produced uranium plasmas. Physics of Plasmas, 2019, 26, .	0.7	27
33	Physical conditions for UO formation in laser-produced uranium plumes. Physical Chemistry Chemical Physics, 2019, 21, 16161-16169.	1.3	30
34	Laser-produced uranium plasma characterization and Stark broadening measurements. Physics of Plasmas, 2019, 26, .	0.7	10
35	Characterization of high-explosive detonations using broadband infrared external cavity quantum cascade laser absorption spectroscopy. Journal of Applied Physics, 2019, 126, .	1.1	26
36	Time-resolved imaging of atoms and molecules in laser-produced uranium plasmas. Journal of Analytical Atomic Spectrometry, 2019, 34, 2236-2243.	1.6	25

#	Article	IF	CITATIONS
37	Single-shot, multi-signature remote detection of uranium by filament-induced breakdown spectroscopy. Optics Letters, 2019, 44, 2783.	1.7	18
38	Time-resolved dual-comb measurement of number density and temperature in a laser-induced plasma. Optics Letters, 2019, 44, 3458.	1.7	27
39	Hydrodynamics and spatio-temporal mapping of oxide formation in laser-produced U plasmas. , 2019, , .		0
40	Time-Resolved Dual Frequency Comb Phase Spectroscopy of Laser-Induced Plasmas. , 2019, , .		0
41	Detection of isotopic shifts and hyperfine structures of uranium transitions using LIF of laser ablation plumes. , 2019, , .		Ο
42	Time-Resolved Dual Frequency Comb Spectroscopy for Broadband Multi-Species Detection in Laser-Induced Plasmas. , 2019, , .		0
43	Standoff 250 m Open-path Detection of Chemical Plumes Using a Broadband Swept-ECQCL. , 2019, , .		Ο
44	Towards Stark Coefficient Determination in Laser-produced Uranium Plasma. , 2019, , .		0
45	Dual-comb spectroscopy of laser-induced plasmas. Nature Communications, 2018, 9, 1273.	5.8	65
46	Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis. Applied Physics Reviews, 2018, 5, 021301.	5.5	143
47	Enhancement of optical emission and ion currents in a laser produced silicon plasma by femtosecond laser-induced periodic surface structuring. Physics of Plasmas, 2018, 25, .	0.7	5
48	Real-time standoff detection of nitrogen isotopes in ammonia plumes using a swept external cavity quantum cascade laser. Optics Letters, 2018, 43, 4065.	1.7	10
49	Standoff analysis of laser-produced plasmas using laser-induced fluorescence. Optics Letters, 2018, 43, 1055.	1.7	23
50	An evaluation of equilibrium conditions and temperature-dependent speciation in a laser-produced air plasma. Physics of Plasmas, 2018, 25, 083303.	0.7	10
51	Elucidating uranium monoxide spectral features from a laser-produced plasma. Optics Express, 2018, 26, 20319.	1.7	26
52	Tracking of oxide formation in laser-produced uranium plasmas. Optics Letters, 2018, 43, 5118.	1.7	24
53	Standoff Detection of Solid Materials Using Laser Induced Fluorescence of Laser-Produced Plasmas. , 2018, , .		0
54	On- and off-axis spectral emission features from laser-produced gas breakdown plasmas. Physics of Plasmas, 2017, 24, .	0.7	25

#	Article	IF	CITATIONS
55	Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes. Scientific Reports, 2017, 7, 3784.	1.6	48
56	Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 135, 54-62.	1.5	20
57	High Resolution Fluorescence Spectroscopy of Laser-Induced Plasmas. , 2017, , .		Ο
58	High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence. Optics Express, 2017, 25, 2312.	1.7	36
59	Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas. Optics Express, 2017, 25, 11477.	1.7	43
60	Generation of nanoclusters by ultrafast laser ablation of Al: Molecular dynamics study. Physical Review Materials, 2017, 1, .	0.9	8
61	Spatio-temporal evolution of LIF in laser ablation plumes. , 2017, , .		Ο
62	Dual-Comb Spectroscopy of Laser-Induced Plasmas. , 2017, , .		0
63	Two-Dimensional Fluorescence Spectroscopy for Measuring Uranium Isotopes in Femtosecond Laser Ablation. , 2017, , .		Ο
64	Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma. Journal of Applied Physics, 2016, 120, .	1.1	38
65	Dynamics of atomic and molecular emission features from nanosecond, femtosecond laser and filament produced plasmas. , 2016, , .		Ο
66	A Comparative Study of Single-pulse and Double-pulse Laser-Induced Breakdown Spectroscopy with Uranium-containing Samples. Applied Spectroscopy, 2016, 70, 467-473.	1.2	22
67	Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas. Journal of Analytical Atomic Spectrometry, 2016, 31, 1192-1197.	1.6	42
68	Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 125, 112-119.	1.5	50
69	Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy. Optics Express, 2016, 24, 17941.	1.7	44
70	Two-dimensional fluorescence spectroscopy of laser-produced plasmas. Optics Letters, 2016, 41, 3547.	1.7	25
71	Molecular formation in the stagnation region of colliding laser-produced plasmas. Plasma Sources Science and Technology, 2016, 25, 065017.	1.3	14
72	Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas. Analytical Chemistry, 2016, 88, 2296-2302.	3.2	92

#	Article	IF	CITATIONS
73	The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor. Journal of Analytical Atomic Spectrometry, 2016, 31, 515-522.	1.6	21
74	Tunable Laser Absorption Spectroscopy of Uranium in Femtosecond Laser Ablation Plasmas. , 2016, , .		2
75	Two-dimensional fluorescence spectroscopy of Al in laser-produced plasmas. , 2016, , .		о
76	Lifecycle of laser-produced air sparks. Physics of Plasmas, 2015, 22, 063301.	0.7	72
77	Femtosecond laser ablation-based mass spectrometry: An ideal tool for stoichiometric analysis of thin films. Scientific Reports, 2015, 5, 13121.	1.6	18
78	Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions. Journal of Nuclear Materials, 2015, 458, 216-223.	1.3	137
79	Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices. Nuclear Fusion, 2015, 55, 033007.	1.6	36
80	In-situ TEM/heavy ion irradiation on ultrafine-and nanocrystalline-grained tungsten: Effect of 3 MeV Si, Cu and W ions. Materials Characterization, 2015, 99, 68-76.	1.9	53
81	Spatio-temporal evolution of uranium emission in laser-produced plasmas. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 111, 1-7.	1.5	29
82	Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range. Journal of Applied Physics, 2015, 117, .	1.1	39
83	Collimation of laser-produced plasmas using axial magnetic field. Laser and Particle Beams, 2015, 33, 175-182.	0.4	25
84	Morphological changes in ultrafast laser ablation plumes with varying spot size. Optics Express, 2015, 23, 15608.	1.7	54
85	Plasma temperature clamping in filamentation laser induced breakdown spectroscopy. Optics Express, 2015, 23, 27113.	1.7	38
86	Characterization of ultrafast laser-ablation plasma plumes at various Ar ambient pressures. Journal of Applied Physics, 2015, 118, .	1.1	20
87	Interpenetration and stagnation in colliding laser plasmas. Physics of Plasmas, 2014, 21, 013502.	0.7	33
88	Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field. Physics of Plasmas, 2014, 21, 053106.	0.7	22
89	Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples. Scientific Reports, 2014, 4, 6845.	1.6	61
90	Tungsten response to transient heat loads generated by laser pulses. , 2014, , .		0

6

#	Article	IF	CITATIONS
91	Expansion dynamics of ultrafast laser produced plasmas in the presence of ambient argon. Journal of Applied Physics, 2014, 116, 133301.	1.1	24
92	Femtosecond Laser Ablation: Fundamentals and Applications. Springer Series in Optical Sciences, 2014, , 143-166.	0.5	41
93	Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures. Journal of Applied Physics, 2014, 115, 033107.	1.1	163
94	Influence of laser pulse duration on extreme ultraviolet and ion emission features from tin plasmas. Physics of Plasmas, 2014, 21, .	0.7	19
95	Experimental simulation of materials degradation of plasma-facing components using lasers. Nuclear Fusion, 2014, 54, 012002.	1.6	41
96	Persistence of uranium emission in laser-produced plasmas. Journal of Applied Physics, 2014, 115, .	1.1	22
97	Low energy Ar+ion irradiation induced surface modification in cadmium zinc telluride (CdZnTe). Materials Research Express, 2014, 1, 035904.	0.8	11
98	Background gas collisional effects on expanding fs and ns laser ablation plumes. Applied Physics A: Materials Science and Processing, 2014, 117, 319-326.	1.1	68
99	Ultrafast laser ablation ICP-MS: role of spot size, laser fluence, and repetition rate in signal intensity and elemental fractionation. Journal of Analytical Atomic Spectrometry, 2014, 29, 339-346.	1.6	49
100	Improvements in discrimination of bulk and trace elements in long-wavelength double pulse LIBS. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 102, 36-41.	1.5	17
101	Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures. Physics of Plasmas, 2014, 21, .	0.7	38
102	Magnetic Stopping of Transient Laser Plasmas. IEEE Transactions on Plasma Science, 2014, 42, 2596-2597.	0.6	3
103	Characterization of laser ablation sample introduction plasma plumes in fs-LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2014, 29, 2267-2274.	1.6	7
104	Electron irradiation-enhanced water and hydrocarbon adsorption in EUV lithography devices. Applied Surface Science, 2014, 289, 358-365.	3.1	3
105	Emission and expansion features of ns and fs laser ablation plumes in an ambient environment. , 2014, ,		0
106	Kinetics of ion and prompt electron emission from laser-produced plasma. Physics of Plasmas, 2013, 20,	0.7	50
107	The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2013, 28, 1420.	1.6	33
108	Effect of prepulse laser wavelength on EUV emission from CO2 reheated laser-produced Sn plasma. Applied Physics A: Materials Science and Processing, 2013, 110, 853-856.	1.1	15

#	Article	IF	CITATIONS
109	The effect of laser pulse duration on ICP-MS signal intensity, elemental fractionation, and detection limits in fs-LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2013, 28, 1781.	1.6	30
110	Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 87, 43-50.	1.5	126
111	Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 87, 65-73.	1.5	72
112	The role of laser wavelength on plasma generation and expansion of ablation plumes in air. Journal of Applied Physics, 2013, 113, .	1.1	125
113	Effects of excitation laser wavelength on Ly-α and He-α line emission from nitrogen plasmas. Physics of Plasmas, 2013, 20, 13105.	0.7	23
114	Comparison of nanosecond and femtosecond LIBS. , 2013, , .		2
115	Primary electron energy dependent flashover in surface polarity on Au films. Journal of Applied Physics, 2013, 113, 173702.	1.1	1
116	Dynamics of femtosecond laser produced tungsten nanoparticle plumes. Journal of Applied Physics, 2013, 114, .	1.1	36
117	Dynamics of ultrafast laser plasma expansion in the presence of an ambient. Applied Physics Letters, 2013, 103, .	1.5	49
118	Emission features of femtosecond laser ablated carbon plasma in ambient helium. Journal of Applied Physics, 2013, 113, 163305.	1.1	28
119	The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry. Journal of Applied Physics, 2013, 114, .	1.1	24
120	Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy. Applied Physics Letters, 2013, 103, .	1.5	31
121	Guest Editorial: Special Issue on Plenary and Invited Papers from ICOPS 2011. IEEE Transactions on Plasma Science, 2012, 40, 1265-1266.	0.6	Ο
122	Probing temporal evolution of extreme ultraviolet assisted contamination on Ru mirror by x-ray photoelectron spectroscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 021601.	0.6	2
123	Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x-ray photoelectron spectroscopy study. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	0.6	19
124	Two-dimensional mapping of the electron density in laser-produced plasmas. Applied Optics, 2012, 51, 498.	0.9	8
125	Tracking electron-induced carbon contamination and cleaning of Ru surfaces by Auger electron spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 041401.	0.9	3
126	Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Physics of Plasmas, 2012, 19, .	0.7	183

#	Article	IF	CITATIONS
127	Spatio-temporal mapping of ablated species in ultrafast laser-produced graphite plasmas. Applied Physics Letters, 2012, 100, .	1.5	28
128	Excitation wavelength dependence of water-window line emissions from boron-nitride laser-produced plasmas. Journal of Applied Physics, 2012, 111, 033301.	1.1	5
129	Laser wavelength dependence on angular emission dynamics of Nd : YAG laser-produced Sn plasmas. Plasma Sources Science and Technology, 2012, 21, 055003.	1.3	37
130	Enhanced shock wave detection sensitivity for laser-produced plasmas in low pressure ambient gases using interferometry. Measurement Science and Technology, 2012, 23, 125204.	1.4	23
131	Low energy electron bombardment induced surface contamination of Ru mirrors. Proceedings of SPIE, 2012, , .	0.8	3
132	Adsorption dynamics and angular dependency of contaminants on Ru mirror surfaces. Journal of Applied Physics, 2012, 111, 016103.	1.1	6
133	Mirror contamination and secondary electron effects during EUV reflectivity analysis. , 2012, , .		1
134	Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy. Journal of Applied Physics, 2012, 112, .	1.1	115
135	Time dependent changes in extreme ultraviolet reflectivity of Ru mirrors from electron-induced surface chemistry. Journal of Applied Physics, 2012, 111, 063518.	1.1	7
136	Angular emission of ions and mass deposition from femtosecond and nanosecond laser-produced plasmas. Journal of Applied Physics, 2012, 111, .	1.1	59
137	Wavelength dependence of prepulse laser beams on EUV emission from CO 2 reheated Sn plasma. , 2012, , .		3
138	The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy. Applied Physics B: Lasers and Optics, 2012, 107, 873-880.	1.1	51
139	10.1063/1.4745867.1.,2012,,.		0
140	Effects of pre-pulses on extreme ultraviolet conversion efficiency in laser-produced tin plasmas. , 2011, , .		0
141	MHD simulation of low current pinch plasma dynamics. , 2011, , .		0
142	Laser-produced carbon plasma evolution and lifecycle. , 2011, , .		0
143	Optimization of dense plasma focus for higher neutron yield. , 2011, , .		0
144	Dynamics of C2 formation in laser-produced carbon plasma in helium environment. Journal of Applied Physics, 2011, 109, .	1.1	42

#	Article	IF	CITATIONS
145	Gas dynamic effects on formation of carbon dimers in laser-produced plasmas. Applied Physics Letters, 2011, 99, 131506.	1.5	28
146	The effect of excitation wavelength on dynamics of laser-produced tin plasma. Journal of Applied Physics, 2011, 109, .	1.1	87
147	The role of laser wavelength on dual pulse laser-breakdown spectroscopy. , 2011, , .		Ο
148	Combined effects of pre-pulsing and target geometry on efficient EUV production from laser produced plasma experiments and modeling. Proceedings of SPIE, 2011, , .	0.8	4
149	Spatial and temporal variations of electron temperatures and densities from EUV-emitting lithium plasmas. Analytical and Bioanalytical Chemistry, 2011, 400, 3239-3246.	1.9	17
150	Ion emission in collisions between two laser-produced plasmas. Journal Physics D: Applied Physics, 2011, 44, 355203.	1.3	18
151	Time-of-flight spectroscopy and fast imaging studies of carbon dimers in laser-produced plasmas. , 2011, , .		Ο
152	Jetlike Emission From Colliding Laser-Produced Plasmas. IEEE Transactions on Plasma Science, 2011, 39, 2780-2781.	0.6	10
153	Enhancements of extreme ultraviolet emission using prepulsed Sn laser-produced plasmas for advanced lithography applications. Journal of Applied Physics, 2011, 110, .	1.1	42
154	Combined effects of prepulsing and target geometry on efficient extreme ultraviolet production from laser produced plasma experiments and modeling. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2011, 10, 033002.	1.0	16
155	Ion emission dynamics in ultrafast laser ablated plasmas. , 2011, , .		0
156	X-ray emission in the "water-window" from laser-produced boron-nitride plasma. , 2011, , .		0
157	Late-time particle emission from laser-produced graphite plasma. Journal of Applied Physics, 2011, 110, .	1.1	25
158	Analysis, simulation, and experimental studies of YAG and CO 2 laser-produced plasma for EUV lithography sources. Proceedings of SPIE, 2010, , .	0.8	18
159	Angular distribution of debris from CO 2 and YAG laser-produced tin plasmas. Proceedings of SPIE, 2010, , .	0.8	3
160	Comparison of EUV spectral and ion emission features from laser-produced Sn and Li plasmas. Proceedings of SPIE, 2010, , .	0.8	8
161	Emission characteristics and dynamics of the stagnation layer in colliding laser produced plasmas. Journal of Applied Physics, 2010, 107, .	1.1	37
162	Efficient laser-produced plasma extreme ultraviolet sources using grooved Sn targets. Applied Physics Letters, 2010, 96, .	1.5	50

#	Article	IF	CITATIONS
163	Laser wavelength effects on ionic and atomic emission from tin plasmas. Applied Physics Letters, 2010, 96, 151501.	1.5	30
164	Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas. Journal of Applied Physics, 2010, 108, 063306.	1.1	32
165	The effect of laser wavelength on emission and particle dynamics of Sn plasma. Journal of Applied Physics, 2010, 108, .	1.1	44
166	Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas. Applied Physics Letters, 2009, 95, .	1.5	54
167	Pulse shaping of transversely excited atmospheric CO2 laser using a simple plasma shutter. Review of Scientific Instruments, 2009, 80, 035101.	0.6	39
168	Electron and ion stagnation at the collision front between two laser produced plasmas. Journal Physics D: Applied Physics, 2009, 42, 055211.	1.3	37
169	Time resolved Nomarski interferometery of laser produced plasma plumes. Applied Surface Science, 2009, 255, 5167-5171.	3.1	13
170	Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications. Journal of Nuclear Materials, 2009, 390-391, 942-946.	1.3	35
171	Reactivity of lithium exposed graphite surface. Applied Surface Science, 2009, 255, 8539-8543.	3.1	36
172	Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2009, 8, 041503.	1.0	41
173	Modeling of EUV emission and conversion efficiency from laser-produced tin plasmas for nanolithography. Proceedings of SPIE, 2008, , .	0.8	3
174	Emission characteristics and dynamics of neutral species in a laser-produced tin plasma. Journal Physics D: Applied Physics, 2007, 40, 447-452.	1.3	18
175	Investigation of the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source. Journal of Applied Physics, 2007, 101, 023305.	1.1	53
176	Influence of spot size on propagation dynamics of laser-produced tin plasma. Journal of Applied Physics, 2007, 102, .	1.1	79
177	IMPACT: A facility to study the interaction of low-energy intense particle beams with dynamic heterogeneous surfaces. Review of Scientific Instruments, 2007, 78, 113105.	0.6	26
178	Effect of laser pulse duration on damage to metal mirrors for laser IFE. Proceedings of SPIE, 2007, , .	0.8	0
179	Debris and radiation-induced damage effects on EUV nanolithography source collector mirror optics performance. , 2007, , .		6
180	Nanosecond spectroscopy of expanding laser-produced tin plasma. Journal of Physics: Conference Series, 2007, 59, 773-777.	0.3	13

#	Article	IF	CITATIONS
181	Mass-limited Sn target irradiated by dual laser pulses for an extreme ultraviolet lithography source. Optics Letters, 2007, 32, 1338.	1.7	10
182	Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects. Applied Physics B: Lasers and Optics, 2007, 86, 547-553.	1.1	53
183	Ambient gas effects on the dynamics of laser-produced tin plume expansion. Journal of Applied Physics, 2006, 99, 083303.	1.1	114
184	Effect of shockwave-induced density jump on laser plasma interactions in low-pressure ambient air. Journal Physics D: Applied Physics, 2006, 39, 4027-4030.	1.3	30
185	Extreme-ultraviolet spectral purity and magnetic ion debris mitigation by use of low-density tin targets. Optics Letters, 2006, 31, 1549.	1.7	48
186	Effect of focal spot size on in-band 135 nm extreme ultraviolet emission from laser-produced Sn plasma. Optics Letters, 2006, 31, 2492.	1.7	30
187	Spectral control of emissions from tin doped targets for extreme ultraviolet lithography. Journal Physics D: Applied Physics, 2006, 39, 484-487.	1.3	56
188	Fast photography of a laser generated plasma expanding across a transverse magnetic field. IEEE Transactions on Plasma Science, 2005, 33, 474-475.	0.6	23
189	Spectroscopic characterization of laser-induced tin plasma. Journal of Applied Physics, 2005, 98, 013306.	1.1	140
190	Debris mitigation in a laser-produced tin plume using a magnetic field. Journal of Applied Physics, 2005, 98, 036102.	1.1	48
191	Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field. Physical Review E, 2004, 69, 026413.	0.8	183
192	The effect of ionization on cluster formation in laser ablation plumes. Nanotechnology, 2004, 15, 390-403.	1.3	103
193	Spatial and temporal evolution of argon sparks. Applied Optics, 2004, 43, 3931.	2.1	45
194	Energy Absorption and Propagation in Laser-Created Sparks. Applied Spectroscopy, 2004, 58, 719-726.	1.2	77
195	Internal structure and expansion dynamics of laser ablation plumes into ambient gases. Journal of Applied Physics, 2003, 93, 2380-2388.	1.1	460
196	Laser propagation and energy absorption by an argon spark. Journal of Applied Physics, 2003, 94, 7402.	1.1	73
197	Plume splitting and sharpening in laser-produced aluminium plasma. Journal Physics D: Applied Physics, 2002, 35, 2935-2938.	1.3	123
198	XUV diagnostics of colliding laser-produced magnesium plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 3717-3726.	0.6	9

#	Article	IF	CITATIONS
199	Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas. Laser and Particle Beams, 2001, 19, 99-103.	0.4	11
200	Effect of the Excitation Source on the Quantum-Yield Measurements of Rhodamine B Laser Dye Studied Using Thermal-Lens Technique Analytical Sciences, 2001, 17, 141-144.	0.8	63
201	<title>Influence of laser irradiance and helium ambient on the expansion of laser-produced carbon plasma</title> . , 2001, , .		0
202	<title>Time evolution of colliding laser-produced magnesium plasmas</title> ., 2001, 4424, 516.		0
203	Expansion dynamics of laser ablated carbon plasma plume in helium ambient. Applied Surface Science, 2001, 172, 103-109.	3.1	48
204	Space- and time-resolved soft x-ray emission from laser-produced magnesium plasma. Journal Physics D: Applied Physics, 2001, 34, 560-566.	1.3	18
205	XUV spectroscopic studies of plasma plumes produced from boron, boron carbide and boron nitride targets by a laser. Journal Physics D: Applied Physics, 2001, 34, 1213-1218.	1.3	13
206	Time evolution of colliding laser produced magnesium plasmas investigated using a pinhole camera. Journal of Applied Physics, 2001, 89, 4737-4740.	1.1	40
207	Experimental investigation of optical limiting and thermal lensing in toluene solutions of C 70. Applied Physics B: Lasers and Optics, 2000, 70, 429-434.	1.1	28
208	Studies of nonlinear absorption and aggregation in aqueous solutions of rhodamine 6G using a transient thermal lens technique. Journal Physics D: Applied Physics, 1999, 32, 407-411.	1.3	27
209	SOLVENT EFFECT ON ABSOLUTE FLUORESCENCE QUANTUM YIELD OF RHODAMINE 6G DETERMINED USING TRANSIENT THERMAL LENS TECHNIQUE. Modern Physics Letters B, 1999, 13, 563-576.	1.0	58
210	Investigation of nonlinear absorption and aggregation in aqueous solutions of rhodamine B using thermal lens technique. Pramana - Journal of Physics, 1999, 52, 435-442.	0.9	4
211	Optical limiting and thermal lensing studies in C60. Journal of Applied Physics, 1999, 86, 1388-1392.	1.1	74
212	Dynamics of laser produced silver plasma under film deposition conditions studied using optical emission spectroscopy. Applied Surface Science, 1998, 125, 227-235.	3.1	9
213	Time evolution of the electron density and temperature in laser-produced plasmas from YBa2Cu3O7. Applied Physics B: Lasers and Optics, 1998, 66, 633-638.	1.1	23
214	Collective behavior of laser-produced plasma from a multicomponent YBa 2 Cu 3 O 7 target in air. Applied Physics B: Lasers and Optics, 1998, 67, 647-651.	1.1	3
215	Temporal and Spatial Behavior of Electron Density and Temperature in a Laser-Produced Plasma from YBa2Cu3O7. Applied Spectroscopy, 1998, 52, 449-455.	1.2	87
216	Influence of ambient gas on the temperature and density of laser produced carbon plasma. Applied Physics Letters, 1998, 72, 167-169.	1.5	122

#	Article	IF	CITATIONS
217	Thermal diffusivity measurements in organic liquids using transient thermal lens calorimetry. Optical Engineering, 1998, 37, 2791.	0.5	78
218	Two and Three Photon Absorption in Rhodamine 6G Methanol Solutions Using Pulsed Thermal Lens Technique. Journal of Nonlinear Optical Physics and Materials, 1998, 07, 531-538.	1.1	14
219	Time Resolved Analysis ofC2Emission from Laser Induced Graphite Plasma in Helium Atmosphere. Japanese Journal of Applied Physics, 1997, 36, 134-138.	0.8	13
220	Spatial analysis of band emission from laser produced plasma. Plasma Sources Science and Technology, 1997, 6, 317-322.	1.3	12
221	Emission characteristics and dynamics of C2 from laser produced graphite plasma. Journal of Applied Physics, 1997, 81, 3637-3643.	1.1	52
222	Photoacoustic signal saturation and optical limiting in C ₇₀ -toluene solution. Optical Engineering, 1997, 36, 332.	0.5	4
223	Optical emission studies of species in laser-produced plasma from carbon. Journal Physics D: Applied Physics, 1997, 30, 1703-1709.	1.3	74
224	Electron density and temperature measurements in a laser produced carbon plasma. Journal of Applied Physics, 1997, 82, 2140-2146.	1.1	317
225	Investigations on nanosecond laser produced plasma in air from the multi-component material YBa2Cu3O7. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 657-666.	1.5	9
226	Anomalous profile of a self-reversed resonance line from Ba+ in a laser produced plasma from YBa2Cu3O7. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 1791-1799.	1.5	7
227	Fine structure in the time of flight distribution of C2 in laser produced plasma from graphite. Pramana - Journal of Physics, 1997, 49, 317-322.	0.9	1
228	Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique. Journal Physics D: Applied Physics, 1996, 29, 1074-1079.	1.3	80
229	A STUDY OF PHOTOACOUSTIC EFFECTS AND OPTICAL LIMITING IN THE SOLUTION OF C60 IN TOLUENE. Modern Physics Letters B, 1996, 10, 61-67.	1.0	4
230	STUDY OF LASER ABLATION IN LIQUIDS USING PULSED PHOTOACOUSTIC TECHNIQUE. Modern Physics Letters B, 1996, 10, 1053-1057.	1.0	0
231	Spatial and time resolved analysis of CN bands in the laser induced plasma from graphite. Pramana - Journal of Physics, 1996, 46, 145-151.	0.9	14
232	Temporal and spatial evolution of C2in laser induced plasma from graphite target. Journal of Applied Physics, 1996, 80, 3561-3565.	1.1	78
233	ELECTRON DENSITY DETERMINATION OF LASER INDUCED PLASMA FROM POLYMETHYL METHACRYLATE USING PHASESHIFT DETECTION TECHNIQUE. Modern Physics Letters B, 1996, 10, 235-239.	1.0	0
234	PULSED PHOTOACOUSTIC DETERMINATION OF ABSOLUTE FLUORESCENT QUANTUM YIELD OF THE LASER DYE RHODAMINE B. Modern Physics Letters B, 1996, 10, 1103-1110.	1.0	2

#	Article	IF	CITATIONS
235	Anomalous variation of thermal lens signal with concentration from rhodamine B in methanol solution. Pramana - Journal of Physics, 1995, 44, 225-229.	0.9	1
236	Pulsed photoacoustic technique to study nonlinear processes in liquids: Results in toluene. Pramana - Journal of Physics, 1995, 44, 231-235.	0.9	4
237	LASER INDUCED THERMAL LENS EFFECT IN RHODAMINE B — SIGNATURE OF RESONANT TWO PHOTON ABSORPTION. Modern Physics Letters B, 1995, 09, 1471-1477.	1.0	8
238	OBSERVATION OF MULTIPHOTON PROCESS IN LIQUID CS2 USING PULSED PHOTOACOUSTIC TECHNIQUE. Modern Physics Letters B, 1995, 09, 871-876.	1.0	3
239	Temporal and spatial evolution of laser ablated plasma from YBa2Cu3O7. Applied Physics Letters, 1994, 64, 3377-3379.	1.5	34
240	Application of laser beam deflection technique to study the diffusion process in electrolyte solutions. Pramana - Journal of Physics, 1994, 43, 401-406.	0.9	3
241	High resolution optogalvanic spectrum of N2-rotational structure of (11, 7) band in the first positive system. Pramana - Journal of Physics, 1994, 42, 231-237.	0.9	3