Hua-Qin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8266332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	m6A-YTHDF1-mediated TRIM29 upregulation facilitates the stem cell-like phenotype of cisplatin-resistant ovarian cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118878.	4.1	82
2	Transcriptional upregulation of BAG3 upon proteasome inhibition. Biochemical and Biophysical Research Communications, 2008, 365, 381-385.	2.1	62
3	Inhibition of the JNK signalling pathway enhances proteasome inhibitorâ€induced apoptosis of kidney cancer cells by suppression of BAG3 expression. British Journal of Pharmacology, 2009, 158, 1405-1412.	5.4	52
4	BAG3 directly stabilizes Hexokinase 2 mRNA and promotes aerobic glycolysis in pancreatic cancer cells. Journal of Cell Biology, 2017, 216, 4091-4105.	5.2	52
5	BAC3-dependent noncanonical autophagy induced by proteasome inhibition in HepG2 cells. Autophagy, 2013, 9, 905-916.	9.1	44
6	Loss of TRIM29 suppresses cancer stem cell-like characteristics of PDACs via accelerating ISG15 degradation. Oncogene, 2020, 39, 546-559.	5.9	43
7	BAC3 promotes autophagy and glutaminolysis via stabilizing glutaminase. Cell Death and Disease, 2019, 10, 284.	6.3	37
8	BAG3 is upregulated by c-Jun and stabilizes JunD. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3346-3354.	4.1	28
9	BAG3 Promoted Starvation-Induced Apoptosis of Thyroid Cancer Cells via Attenuation of Autophagy. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2298-E2307.	3.6	27
10	ISG15 suppresses translation of ABCC2 via ISGylation of hnRNPA2B1 and enhances drug sensitivity in cisplatin resistant ovarian cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118647.	4.1	22
11	BAC3 elevation inhibits cell proliferation via direct interaction with G6PD in hepatocellular carcinomas. Oncotarget, 2016, 7, 700-711.	1.8	21
12	BAG3 promotes stem cell-like phenotype in breast cancer by upregulation of CXCR4 via interaction with its transcript. Cell Death and Disease, 2017, 8, e2933-e2933.	6.3	19
13	BAC3 regulates stability of IL-8 mRNA via interplay between HuR and miR-4312 in PDACs. Cell Death and Disease, 2018, 9, 863.	6.3	19
14	BAG3 promotes proliferation of ovarian cancer cells via post-transcriptional regulation of Skp2 expression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1668-1678.	4.1	18
15	BAG3 sensitizes cancer cells exposed to DNA damaging agents via direct interaction with GRP78. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3245-3253.	4.1	16
16	BAG3â€positive pancreatic stellate cells promote migration and invasion of pancreatic ductal adenocarcinoma. Journal of Cellular and Molecular Medicine, 2019, 23, 5006-5016.	3.6	14
17	BAG5 promotes invasion of papillary thyroid cancer cells via upregulation of fibronectin 1 at the translational level. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118715.	4.1	14
18	TRIM29 regulates the SETBP1/SET/PP2A axis via transcription factor VEZF1 to promote progression of ovarian cancer. Cancer Letters, 2022, 529, 85-99.	7.2	14

HUA-QIN WANG

#	Article	IF	CITATIONS
19	TRIM29 alters bioenergetics of pancreatic cancer cells via cooperation of miR-2355-3p and DDX3X recruitment to AK4 transcript. Molecular Therapy - Nucleic Acids, 2021, 24, 579-590.	5.1	11
20	BAG3 deletion suppresses stem cell-like features of pancreatic ductal adenocarcinoma via translational suppression of ISG15. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 819-827.	4.1	9
21	p53â€dependent transcriptional suppression of BAG3 protects cells against metabolic stress via facilitation of p53 accumulation. Journal of Cellular and Molecular Medicine, 2020, 24, 562-572.	3.6	9
22	BAG3 Suppresses Loading of Ago2 to IL6 mRNA in Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 2019, 9, 225.	2.8	7
23	Sestrin 2 protects against metabolic stress in a p53-independent manner. Biochemical and Biophysical Research Communications, 2019, 513, 852-856.	2.1	6
24	BAG3 epigenetically regulates GALNT10 expression via WDR5 and facilitates the stem cell-like properties of platin-resistant ovarian cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119077.	4.1	6
25	Implication of BAG5 downregulation in metabolic reprogramming of cisplatin-resistant ovarian cancer cells via mTORC2 signaling pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021. 1868. 119076.	4.1	6