Diane M Robins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/826616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transforming DNA integrates into the host chromosome. Cell, 1981, 23, 29-39.	28.9	320
2	Regulated expression of human growth hormone genes in mouse cells. Cell, 1982, 29, 623-631.	28.9	252
3	Hsp90 Regulates Androgen Receptor Hormone Binding Affinity in Vivo. Journal of Biological Chemistry, 1996, 271, 28697-28702.	3.4	203
4	Treatment-Dependent Androgen Receptor Mutations in Prostate Cancer Exploit Multiple Mechanisms to Evade Therapy. Cancer Research, 2009, 69, 4434-4442.	0.9	190
5	An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell, 1988, 55, 247-254.	28.9	187
6	Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. Journal of Clinical Investigation, 2006, 116, 2663-2672.	8.2	151
7	Regulation of autism-relevant behaviors by cerebellar–prefrontal cortical circuits. Nature Neuroscience, 2020, 23, 1102-1110.	14.8	149
8	Multiple Components of a Complex Androgen-Dependent Enhancer. Molecular Endocrinology, 1991, 5, 1587-1596.	3.7	90
9	Macroautophagy Is Regulated by the UPR–Mediator CHOP and Accentuates the Phenotype of SBMA Mice. PLoS Genetics, 2011, 7, e1002321.	3.5	84
10	Replacing the Mouse Androgen Receptor with Human Alleles Demonstrates Glutamine Tract Length-Dependent Effects on Physiology and Tumorigenesis in Mice. Molecular Endocrinology, 2006, 20, 1248-1260.	3.7	76
11	Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet. Acta Neuropathologica, 2016, 132, 127-144.	7.7	74
12	Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Human Molecular Genetics, 2014, 23, 1376-1386.	2.9	68
13	Abnormalities of Germ Cell Maturation and Sertoli Cell Cytoskeleton in Androgen Receptor 113 CAG Knock-In Mice Reveal Toxic Effects of the Mutant Protein. American Journal of Pathology, 2006, 168, 195-204.	3.8	64
14	Regulator of sex-limitation (Rsl) encodes a pair of KRAB zinc-finger genes that control sexually dimorphic liver gene expression. Genes and Development, 2003, 17, 2664-2674.	5.9	62
15	Development of a novel cell based androgen screening model. Journal of Steroid Biochemistry and Molecular Biology, 2016, 156, 17-22.	2.5	60
16	Functional Interaction of Human Cdc37 with the Androgen Receptor but Not with the Glucocorticoid Receptor. Journal of Biological Chemistry, 2001, 276, 5814-5820.	3.4	56
17	Length of the human androgen receptor glutamine tract determines androgen sensitivity in vivo. Molecular and Cellular Endocrinology, 2011, 342, 81-86.	3.2	54
18	Multiple Receptor Domains Interact to Permit, or Restrict, Androgen-specific Gene Activation. Journal of Biological Chemistry, 1998, 273, 24216-24222.	3.4	50

DIANE M ROBINS

#	Article	IF	CITATIONS
19	AML3/CBFα1 Is Required for Androgen-specific Activation of the Enhancer of the Mouse Sex-limited Protein (Slp) Gene. Journal of Biological Chemistry, 1999, 274, 30624-30630.	3.4	48
20	Regulation of Translation of Ovalbumin Messenger RNA by Estrogens and Progesterone in Oviduct of Withdrawn Chicks. FEBS Journal, 1978, 90, 51-58.	0.2	46
21	Disrupting SUMOylation enhances transcriptional function and ameliorates polyglutamine androgen receptor–mediated disease. Journal of Clinical Investigation, 2015, 125, 831-845.	8.2	46
22	Letter to the Editor: Androgens and Prostate Cancer: Are the Descriptors Valid?. Cancer Biology and Therapy, 2005, 4, 4-5.	3.4	44
23	Design, Synthesis, and Pharmacological Characterization of 4-[4,4-Dimethyl-3-(4-hydroxybutyl)-5-oxo-2-thioxo-1-imidazolidinyl]- 2-iodobenzonitrile as a High-Affinity Nonsteroidal Androgen Receptor Ligand. Journal of Medicinal Chemistry, 2000, 43, 3344-3347.	6.4	42
24	Oct-1 Preferentially Interacts with Androgen Receptor in a DNA-dependent Manner That Facilitates Recruitment of SRC-1. Journal of Biological Chemistry, 2001, 276, 6420-6428.	3.4	41
25	Expansion and diversification of KRAB zinc-finger genes within a cluster including Regulator of sex-limitation 1 and 2. Genomics, 2005, 85, 752-761.	2.9	40
26	The Androgen Receptor (AR) Amino-Terminus Imposes Androgen-Specific Regulation of AR Gene Expression via an Exonic Enhancer*. Endocrinology, 2001, 142, 1107-1116.	2.8	38
27	The Regulator of Sex-Limitation Gene, Rsl, Enforces Male-Specific Liver Gene Expression by Negative Regulation. Endocrinology, 2003, 144, 1854-1860.	2.8	37
28	Effects of Sex Steroid Receptor Specificity in the Regulation of Skeletal Metabolism. Calcified Tissue International, 2004, 75, 60-70.	3.1	37
29	Altered RNA splicing contributes to skeletal muscle pathology in Kennedy disease knock-in mice. DMM Disease Models and Mechanisms, 2009, 2, 500-507.	2.4	35
30	Tissue-specific variation in C4 and Slp gene regulation. Nucleic Acids Research, 1988, 16, 6857-6870.	14.5	29
31	The KRAB Zinc Finger Protein RSL1 Regulates Sex- and Tissue-Specific Promoter Methylation and Dynamic Hormone-Responsive Chromatin Configuration. Molecular and Cellular Biology, 2012, 32, 3732-3742.	2.3	27
32	Contextual dependence of steroid receptor function on an androgen-responsive enhancer. Molecular and Cellular Endocrinology, 1996, 121, 75-86.	3.2	23
33	Glutamine tract length of human androgen receptors affects hormone-dependent and -independent prostate cancer in mice. Human Molecular Genetics, 2008, 17, 98-110.	2.9	23
34	MEF2 impairment underlies skeletal muscle atrophy in polyglutamine disease. Acta Neuropathologica, 2020, 140, 63-80.	7.7	23
35	Profiling Human Androgen Receptor Mutations Reveals Treatment Effects in a Mouse Model of Prostate Cancer. Molecular Cancer Research, 2008, 6, 1691-1701.	3.4	22
36	Predicting response to hormonal therapy and survival in men with hormone sensitive metastatic prostate cancer. Critical Reviews in Oncology/Hematology, 2013, 85, 82-93.	4.4	22

DIANE M ROBINS

#	Article	IF	CITATIONS
37	Differential modulation of the androgen receptor for prostate cancer therapy depends on the DNA response element. Nucleic Acids Research, 2020, 48, 4741-4755.	14.5	21
38	Two Distinct Mechanisms Elicit Androgen-Dependent Expression of the Mouse Sex-Limited Protein Gene. Molecular Endocrinology, 1997, 11, 460-469.	3.7	20
39	URI Regulates KAP1 Phosphorylation and Transcriptional Repression via PP2A Phosphatase in Prostate Cancer Cells. Journal of Biological Chemistry, 2016, 291, 25516-25528.	3.4	20
40	Spatial gene expression analysis of neuroanatomical differences in mouse models. NeuroImage, 2017, 163, 220-230.	4.2	18
41	The Androgen Receptor's CAG/Glutamine Tract in Mouse Models of Neurological Disease and Cancer. Journal of Alzheimer's Disease, 2008, 14, 247-255.	2.6	17
42	Involvement of an Octamer-Like Sequence Within a Crucial Region of the Androgen-DependentSlpEnhancer. DNA and Cell Biology, 1997, 16, 45-57.	1.9	16
43	Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. Journal of Clinical Investigation, 2018, 128, 3630-3641.	8.2	16
44	The KRAB Zinc Finger Protein RSL1 Modulates Sex-Biased Gene Expression in Liver and Adipose Tissue To Maintain Metabolic Homeostasis. Molecular and Cellular Biology, 2014, 34, 221-232.	2.3	15
45	Regulator of sex-limitation KRAB zinc finger proteins modulate sex-dependent and -independent liver metabolism. Physiological Genomics, 2009, 38, 16-28.	2.3	14
46	Androgen receptor gene polymorphisms and alterations in prostate cancer: Of humanized mice and men. Molecular and Cellular Endocrinology, 2012, 352, 26-33.	3.2	13
47	Androgen receptor variants and prostate cancer in humanized AR mice. Journal of Steroid Biochemistry and Molecular Biology, 2008, 108, 230-236.	2.5	12
48	Androgen receptor and molecular mechanisms of male-specific gene expression. Novartis Foundation Symposium, 2008, , 42-56.	1.1	12
49	Androgen receptor interactions with Oct-1 and Brn-1 are physically and functionally distinct. Molecular and Cellular Endocrinology, 2002, 190, 39-49.	3.2	11
50	Multiple Mechanisms of Male-Specific Gene Expression: Lessons from the Mouse Sex-Limited Protein (Slp) Gene. Progress in Molecular Biology and Translational Science, 2004, 78, 1-36.	1.9	11
51	Steroid hormone responsiveness of a family of closely related mouse proviral elements. Mammalian Genome, 1997, 8, 811-817.	2.2	10
52	A Pair of Mouse KRAB Zinc Finger Proteins Modulates Multiple Indicators of Female Reproduction1. Biology of Reproduction, 2010, 82, 662-668.	2.7	10
53	Two Distinct Mechanisms Elicit Androgen-Dependent Expression of the Mouse Sex-Limited Protein Gene. Molecular Endocrinology, 1997, 11, 460-469.	3.7	10
54	Androgen receptor with short polyglutamine tract preferably enhances Wnt/β-catenin-mediated prostatic tumorigenesis. Oncogene, 2020, 39, 3276-3291.	5.9	9

DIANE M ROBINS

#	Article	IF	CITATIONS
55	The Androgen Receptor (AR) Amino-Terminus Imposes Androgen-Specific Regulation of AR Gene Expression via an Exonic Enhancer. Endocrinology, 2001, 142, 1107-1116.	2.8	9
56	Androgen receptor and molecular mechanisms of male-specific gene expression. Novartis Foundation Symposium, 2005, 268, 42-52; discussion 53-6, 96-9.	1.1	9
57	Trans-regulatory genes affect Slpa and Slpo expression and act in a tissue-specific manner. Immunogenetics, 1989, 29, 340-345.	2.4	7
58	Regulatory capacity of an androgen-specific enhancer of the mouse Slp gene in transgenic mice. Molecular and Cellular Endocrinology, 1997, 133, 89-97.	3.2	7
59	Interaction of the Androgen Receptor, ETV1, and PTEN Pathways in Mouse Prostate Varies with Pathological Stage and Predicts Cancer Progression. Hormones and Cancer, 2015, 6, 67-86.	4.9	7
60	Mouse complement components C4 and Slp act synergistically in a homologous hemolytic C4 assay. European Journal of Immunology, 2000, 30, 1507-1511.	2.9	4
61	Adapter annealing to engineer restriction enzyme sites at cloning junctions. Analytical Biochemistry, 2006, 350, 313-315.	2.4	3
62	Insights from AR Gene Mutations. , 2009, , 207-240.		2
63	The Role of the Androgen Receptor Polyglutamine Tract in Prostate Cancer: In Mice and Men. , 2009, , 269-295.		1
64	Characterization of mice bearing humanized androgen receptor genes (h/mAr) varying in polymorphism length. NeuroImage, 2021, 226, 117594.	4.2	0