

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8265749/publications.pdf Version: 2024-02-01

DENCYLLIN

#	Article	IF	CITATIONS
1	Origami Spring-Inspired Shape Morphing for Flexible Robotics. Soft Robotics, 2022, 9, 798-806.	8.0	19
2	Conical Kresling origami and its applications to curvature and energy programming. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	2.1	13
3	Accurate PIV measurement on slip boundary using single-pixel algorithm. Measurement Science and Technology, 2022, 33, 055302.	2.6	4
4	A micromechanical model for phase-change composites. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	2.1	0
5	Physically Entangled Antiswelling Hydrogels with High Stiffness. Macromolecular Rapid Communications, 2022, 43, .	3.9	6
6	Soft Actuators Based on Liquid–Vapor Phase Change Composites. Soft Robotics, 2021, 8, 251-261.	8.0	34
7	Blowing-only opposition control: Characteristics of turbulent drag reduction and implementation by deep learning. AIP Advances, 2021, 11, .	1.3	3
8	Motion Enhancement of Spherical Surface Walkers with Microstructures. Advanced Intelligent Systems, 2021, 3, 2000226.	6.1	5
9	Programmable Self‣ocking Micromachines with Tunable Couplings. Advanced Intelligent Systems, 2021, 3, 2000232.	6.1	2
10	Enhanced Locomotion of Shape Morphing Microrobots by Surface Coating. Advanced Intelligent Systems, 2021, 3, 2000270.	6.1	11
11	Intelligent Shape-Morphing Micromachines. Research, 2021, 2021, 9806463.	5.7	6
12	Cavity dynamics of water drop impact onto immiscible oil pool with different viscosity. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 447-455.	3.4	5
13	Self-Propelled Detachment upon Coalescence of Surface Bubbles. Physical Review Letters, 2021, 127, 235501.	7.8	21
14	Three-dimensional backflow at liquid–gas interface induced by surfactant. Journal of Fluid Mechanics, 2020, 899, .	3.4	26
15	Effects of the actuation waveform on the drop size reduction in drop-on-demand inkjet printing. Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 983-989.	3.4	17
16	Superrepellency of underwater hierarchical structures on <i>Salvinia</i> leaf. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2282-2287.	7.1	83
17	Encoding Smart Microjoints for Microcrawlers with Enhanced Locomotion. Advanced Intelligent Systems, 2020, 2, 1900128.	6.1	18
18	Effect of Reynolds number on drag reduction in turbulent boundary layer flow over liquid–gas interface. Physics of Fluids, 2020, 32, .	4.0	29

Ρενσγύ ζν

#	Article	IF	CITATIONS
19	Coupling effect of wall slip and spanwise oscillation on drag reduction in turbulent channel flow. Physical Review Fluids, 2020, 5, .	2.5	5
20	Effects of nozzle and fluid properties on the drop formation dynamics in a drop-on-demand inkjet printing. Applied Mathematics and Mechanics (English Edition), 2019, 40, 1239-1254.	3.6	21
21	Gravitational Effect in Evaporating Binary Microdroplets. Physical Review Letters, 2019, 122, 114501.	7.8	71
22	Multimaterial 3D Printing: Multimaterial Microfluidic 3D Printing of Textured Composites with Liquid Inclusions (Adv. Sci. 3/2019). Advanced Science, 2019, 6, 1970018.	11.2	4
23	Multimaterial Microfluidic 3D Printing of Textured Composites with Liquid Inclusions. Advanced Science, 2019, 6, 1800730.	11.2	59
24	Morphology evolution of liquid–gas interface on submerged solid structured surfaces. Extreme Mechanics Letters, 2019, 27, 34-51.	4.1	33
25	Liquid–liquid displacement in slippery liquid-infused membranes (SLIMs). Soft Matter, 2018, 14, 1780-1788.	2.7	37
26	A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation. Scientific Reports, 2018, 8, 4791.	3.3	81
27	Evaporation-Triggered Segregation of Sessile Binary Droplets. Physical Review Letters, 2018, 120, 224501.	7.8	63
28	Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures. Physics of Fluids, 2017, 29, .	4.0	15
29	Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking. Journal of Fluid Mechanics, 2017, 823, 470-497.	3.4	126
30	Segregation in dissolving binary-component sessile droplets. Journal of Fluid Mechanics, 2017, 812, 349-369.	3.4	15
31	Ultimate Stable Underwater Superhydrophobic State. Physical Review Letters, 2017, 119, 134501.	7.8	73
32	Growth and Detachment of Oxygen Bubbles Induced by Gold-Catalyzed Decomposition of Hydrogen Peroxide. Journal of Physical Chemistry C, 2017, 121, 20769-20776.	3.1	31
33	10.1063/1.4977052.1., 2017, , .		0
34	Underwater Superhydrophobicity: Stability, Design and Regulation, and Applications. Applied Mechanics Reviews, 2016, 68, .	10.1	77
35	Receding dynamics of contact lines and size-dependent adhesion on microstructured hydrophobic surfaces. Soft Matter, 2016, 12, 4257-4265.	2.7	18
36	Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic surfaces. Soft Matter, 2016, 12, 4241-4246.	2.7	53

Ρενσγύ ζν

#	Article	IF	CITATIONS
37	Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8642-8647.	7.1	138
38	Liquid plasticine: controlled deformation and recovery of droplets with interfacial nanoparticle jamming. Soft Matter, 2016, 12, 1655-1662.	2.7	52
39	Morphology of gas cavities on patterned hydrophobic surfaces under reduced pressure. Physics of Fluids, 2015, 27, 092003.	4.0	28
40	Symmetric and Asymmetric Meniscus Collapse in Wetting Transition on Submerged Structured Surfaces. Langmuir, 2015, 31, 1248-1254.	3.5	55
41	Metastable States and Wetting Transition of Submerged Superhydrophobic Structures. Physical Review Letters, 2014, 112, 196101.	7.8	189
42	Viscous optical clearing agent for <i>in vivo</i> optical imaging. Journal of Biomedical Optics, 2014, 19, 076019.	2.6	13
43	Stress fields in hollow core–shell spherical electrodes of lithium ion batteries. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140299.	2.1	24
44	Importance of Hierarchical Structures in Wetting Stability on Submersed Superhydrophobic Surfaces. Langmuir, 2012, 28, 9440-9450.	3.5	106
45	3D Propulsions of Rodâ€5haped Micropropellers. Advanced Intelligent Systems, 0, , 2100083.	6.1	0
46	Solid–Liquid Composites with High Impact Resistance. Acta Mechanica Solida Sinica, 0, , 1.	1.9	2