
Xiao-Guang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8265744/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multibit Optoelectronic Memory in Topâ€Floatingâ€Gated van der Waals Heterostructures. Advanced Functional Materials, 2019, 29, 1902890.	14.9	69
2	Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping. Solar Energy Materials and Solar Cells, 2013, 113, 144-147.	6.2	66
3	The self-seeded growth of InAsSb nanowires on silicon by metal-organic vapor phase epitaxy. Journal of Crystal Growth, 2014, 396, 33-37.	1.5	32
4	Controlled-Direction Growth of Planar InAsSb Nanowires on Si Substrates without Foreign Catalysts. Nano Letters, 2016, 16, 877-882.	9.1	29
5	Selective-Area MOCVD Growth and Carrier-Transport-Type Control of InAs(Sb)/GaSb Core–Shell Nanowires. Nano Letters, 2016, 16, 7580-7587.	9.1	26
6	Improved performance of 1.3- <i>μ</i> m InAs/GaAs quantum dot lasers by direct Si doping. Applied Physics Letters, 2018, 113, .	3.3	22
7	Impact of double-cap procedure on the characteristics of InAs/InGaAsP/InP quantum dots grown by metal-organic chemical vapor deposition. Journal of Crystal Growth, 2013, 375, 100-103.	1.5	15
8	Surface Modification of Al-Doped ZnO Transparent Conducive Thin Films with Polycrystalline Zinc Molybdenum Oxide. ACS Applied Materials & Interfaces, 2019, 11, 26491-26499.	8.0	10
9	Si delta doping inside InAs/GaAs quantum dots with different doping densities. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 041808.	1.2	8
10	2004-nm Ridge-Waveguide Distributed Feedback Lasers With InGaAs Multi-Quantum Wells. IEEE Photonics Technology Letters, 2016, 28, 2257-2260.	2.5	7
11	Self-Catalyzed Growth of Vertical GaSb Nanowires on InAs Stems by Metal-Organic Chemical Vapor Deposition. Nanoscale Research Letters, 2017, 12, 428.	5.7	7
12	Self-Flattened ZnO:Al Transparent Conductive Thin Films Derived by Sol–Gel Process. IEEE Journal of Photovoltaics, 2018, 8, 1149-1155.	2.5	7
13	Flat-topped ultrabroad stimulated emission from chirped InAs/InP quantum dot laser with spectral width of 92 nm. Applied Physics Letters, 2016, 108, .	3.3	5
14	Self-Seeded MOCVD Growth and Dramatically Enhanced Photoluminescence of InGaAs/InP Core–Shell Nanowires. Nanoscale Research Letters, 2018, 13, 269.	5.7	5
15	Defect-free InAsSb nanowire arrays on Si substrates grown by selective-area metal–organic chemical vapor deposition. Nanotechnology, 2018, 29, 405601.	2.6	5
16	Enhanced performance of InAs/GaAs quantum dot superluminescent diodes by direct Si-doping. AIP Advances, 2020, 10, 045202.	1.3	4
17	Large Signal Modulation Characteristics in the Transition Regime for Two-State Lasing Quantum Dot Lasers. Chinese Physics Letters, 2016, 33, 124204.	3.3	3
18	Improved linewidth enhancement factor of 1.3-Âμm InAs/GaAs quantum dot lasers by direct Si doping. AIP Advances, 2021, 11, 055002.	1.3	3

XIAO-GUANG YANG

#	Article	IF	CITATIONS
19	25 Gb/s directly modulated ground-state operation of 1.3 μm InAs/GaAs quantum dot lasers up to 75°C. Chinese Optics Letters, 2020, 18, 071401.	2.9	3
20	A-axis oriented Zn _{0.72} Mg _{0.28} O epitaxial thin films with large second-order nonlinear susceptibility. Journal Physics D: Applied Physics, 2022, 55, 19LT01.	2.8	3
21	Detailed Balance-Limiting Efficiency of Solar Cells with Dual Intermediate Bands Based on InAs/InGaAs Quantum Dots. Photonics, 2022, 9, 290.	2.0	3
22	Significantly improved performances of 1.3 <i>μ</i> m InAs/GaAs QD laser by spatially separated <i>dual</i> -doping. Applied Physics Letters, 2022, 121, .	3.3	3
23	Influences of Ridge-Waveguide Shape and Width on Performances of InP-Based Coupled Ridge-Waveguide Laser Arrays. IEEE Journal of Quantum Electronics, 2018, 54, 1-4.	1.9	1
24	1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance. Crystals, 2020, 10, 980.	2.2	1
25	Optimizing the double-cap procedure for InAs/InGaAsP/InP quantum dots by metal-organic chemical vapor deposition. , 2013, , .		0
26	Optically Rough and Physically Flat Transparent Conductive Substrates with Strong Far-Field Scattering. ACS Applied Materials & Interfaces, 2022, 14, 12893-12900.	8.0	0