Wolfgang Blum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/826553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the validity of the natural creep law at low stresses. Materialia, 2021, 15, 100958.	2.7	2
2	The Effect of Predeformation on Creep Strength of 9% Cr Steel. Materials, 2020, 13, 5330.	2.9	6
3	Creep behavior of an AlTiVNbZr0.25 high entropy alloy at 1073ÂK. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 783, 139291.	5.6	21
4	Strain Rate Contribution due to Dynamic Recovery of Ultrafine-Grained Cu–Zr as Evidenced by Load Reductions during Quasi-Stationary Deformation at 0.5 Tm. Metals, 2019, 9, 1150.	2.3	6
5	Quasi-Stationary Strength of ECAP-Processed Cu-Zr at 0.5Tm. Metals, 2019, 9, 1149.	2.3	2
6	Discussion: Activation volumes of plastic deformation of crystals. Scripta Materialia, 2018, 146, 27-30. Dynamic grain coarsening in creep of pure Cu atkmmkmath	5.2	21
7	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	5.6	7
8	predeformation by ECAP. Materials Science & Amp, Engineering A: Structural Materials: Properties, Deformation Strength of Nanocrystalline Thin Films. Journal of Materials Science and Technology, 2017, 33, 718-722.	10.7	5
9	In situ study of thermally activated flow and dynamic restoration of ultrafine-grained pure Cu at 373 K. Journal of Materials Research, 2017, 32, 4514-4521.	2.6	0
10	Dynamic restoration of severely predeformed, ultrafine-grained pure Cu at 373 K observed in situ. Materials Characterization, 2017, 134, 329-334.	4.4	5
11	The influence of long-term annealing at room temperature on creep behaviour of ECAP-processed copper. Materials Letters, 2017, 188, 235-238.	2.6	11
12	Thermally activated flow in soft and hard regions: Getting information on work hardening strain and recovery strain from rate change tests. Metallic Materials, 2016, 53, 199-205.	0.3	2
13	Creep study of mechanisms involved in low-temperature superplasticity of UFG Ti-6Al-4V processed by SPD. Materials Characterization, 2016, 116, 84-90.	4.4	19
14	Grain size and alloying effects on dynamic recovery in nanocrystalline metals. Acta Materialia, 2016, 119, 104-114.	7.9	12
15	Effects of Grain Refinement by ECAP on the Deformation Resistance of Al Interpreted in Terms of Boundary-Mediated Processes. Journal of Materials Science and Technology, 2016, 32, 1309-1320.	10.7	20
16	Interpretation of unloading tests on nanocrystalline Cu in terms of two mechanisms of deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 665, 171-174.	5.6	4
17	Dynamic recovery in nanocrystalline Ni. Acta Materialia, 2015, 91, 91-100.	7.9	49
18	In situstudy of microstructure and strength of severely predeformed pure Cu in deformation at 573ÂK. Philosophical Magazine, 2015, 95, 3696-3711.	1.6	14

#	Article	IF	CITATIONS
19	Correct Interpretation of Creep Rates: A Case Study of Cu. Journal of Materials Science and Technology, 2015, 31, 1065-1068.	10.7	7
20	What is "stationary―deformation of pure Cu?. Journal of Materials Science, 2014, 49, 2987-2997.	3.7	12
21	Effect of grain refinement by ECAP on creep of pure Cu. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 590, 423-432.	5.6	35
22	Influence of grain boundaries on the deformation resistance: insights from an investigation of deformation kinetics and microstructure of copper after predeformation by ECAP. Philosophical Magazine, 2013, 93, 4331-4354.	1.6	22
23	Deformation resistance in the transition from coarse-grained to ultrafine-grained Cu by severe plastic deformation up to 24 passes of ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8621-8627.	5.6	41
24	Temperature dependence of the strength of fine- and ultrafine-grained materials. Acta Materialia, 2011, 59, 1300-1308.	7.9	123
25	Control of dynamic recovery and strength by subgrain boundaries – insights from stress-change tests on CaF2single crystals. Philosophical Magazine, 2011, 91, 908-931.	1.6	7
26	A simple dislocation model of the influence of high-angle boundaries on the deformation behavior of ultrafine-grained materials. Journal of Physics: Conference Series, 2010, 240, 012136.	0.4	6
27	Stability of ultrafine-grained Cu to subgrain coarsening and recrystallization in annealing and deformation at elevated temperatures. Acta Materialia, 2009, 57, 5207-5217.	7.9	55
28	Development of new 11%Cr heat resistant ferritic steels with enhanced creep resistance for steam power plants with operating steam temperatures up to 650ŰC. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 510-511, 180-184.	5.6	44
29	Coarsening of precipitates and degradation of creep resistance in tempered martensite steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 510-511, 81-87.	5.6	48
30	Dislocation glide velocity in creep of Mg alloys derived from dip tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 510-511, 393-397.	5.6	9
31	Evolution of dislocation structure and deformation resistance in creep exemplified on single crystals of CaF2. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 510-511, 46-50.	5.6	13
32	New observations on high-temperature creep at very low stresses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 510-511, 20-24.	5.6	14
33	A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Materialia, 2009, 57, 1966-1974.	7.9	134
34	Quantification of dislocation structures at high resolution by atomic force microscopy of dislocation etch pits. Philosophical Magazine Letters, 2009, 89, 391-398.	1.2	7
35	Dislocation mechanics of creep. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 510-511, 7-13.	5.6	89
36	Quantifying the distributions of dislocation spacings and cell sizes. Journal of Materials Science, 2008, 43, 2700-2707.	3.7	7

#	ARTICLE	IF	CITATIONS
37	Transmission Electron Microscopy Study of Strain-Induced Low- and High-Angle Boundary Development in Equal-Channel Angular-Pressed Commercially Pure Aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 181-189.	2.2	60
38	Modelling the transition from strengthening to softening due to grain boundaries. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 95-98.	5.6	4
39	On the elevated-temperature deformation behavior of polycrystalline Cu subjected to predeformation by multiple compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 547-550.	5.6	1
40	Structural stability of ultrafine-grained copper. Scripta Materialia, 2008, 58, 53-56.	5.2	15
41	Mechanisms of creep deformation in steel. , 2008, , 365-402.		15
42	Deformation kinetics of nanocrystalline nickel. Acta Materialia, 2007, 55, 5708-5717.	7.9	75
43	Harper–Dorn creep. International Journal of Plasticity, 2007, 23, 980-1000.	8.8	62
44	Deformation kinetics of coarse-grained and ultrafine-grained commercially pure Ti. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 275-278.	5.6	20
45	Flow stress and creep rate of nanocrystalline Ni. Scripta Materialia, 2007, 57, 429-431.	5.2	25
46	Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels. Acta Materialia, 2006, 54, 3003-3014.	7.9	119
47	Creep transients during stress changes in ultrafine-grained copper. Scripta Materialia, 2006, 54, 1803-1807.	5.2	23
48	On the Hall–Petch relation between flow stress and grain size. International Journal of Materials Research, 2006, 97, 1661-1666.	0.3	16
49	Effects of cyclic deformation on subgrain evolution and creep in 9–12% Cr-steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 406, 152-159.	5.6	57
50	Deformation kinetics of ultrafine-grained Cu and Ti. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 451-456.	5.6	34
51	Bridging steady-state deformation behavior at low and high temperature by considering dislocation dipole annihilation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 400-401, 175-181.	5.6	12
52	Creep deformation mechanisms in high-pressure die-cast magnesium-aluminum-base alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1721-1728.	2.2	71
53	Strain rate sensitivity of Cu after severe plastic deformation by multiple compression. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, R119-R121.	1.8	25

0

#	Article	IF	CITATIONS
55	Influence of grain boundaries on steady-state deformation resistance of ultrafine-grained Cu. Physica Status Solidi A, 2004, 201, 2915-2921.	1.7	14
56	On Coble creep in ultrafine-grained Cu. Physica Status Solidi A, 2004, 201, R114-R117.	1.7	14
57	Does nanocrystalline Cu deform by Coble creep near room temperature?. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 585-589.	5.6	38
58	Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu. Acta Materialia, 2004, 52, 5009-5018.	7.9	161
59	Subgrain structure during annealing and creep of the cast martensitic Cr-steel G-X12CrMoWVNbN 10-1-1. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 341, 211-215.	5.6	35
60	Influence of thermal history on precipitation of hardening phases in tempered martensite 10%Cr-steel X12CrMoWVNbN 10-1-1. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 348, 201-207.	5.6	30
61	Migration of subgrain boundaries under stress in bi- and multi-granular structures. Physica Status Solidi A, 2003, 200, 339-345.	1.7	3
62	Martensitic/Ferritic Super Heat-resistant 650.DEG.C. Steels. Design and Testing of Model Alloys ISIJ International, 2002, 42, 1505-1514.	1.4	54
63	Microstructure-based constitutive law of plastic deformation. Computational Materials Science, 2002, 25, 200-206.	3.0	20
64	New method of determining stress relaxation behavior in creep machines by controlled unloading. International Journal of Materials Research, 2002, 93, 649-653.	0.8	1
65	Understanding creep—a review. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 291-303.	2.2	122
66	Harper-dorn creep and specimen size. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 305-310.	2.2	15
67	Subgrain formation during deformation: Physical origin and consequences. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 319-327.	2.2	67
68	Creep of crystalline materials: experimental basis, mechanisms and models. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 8-15.	5.6	33
69	Spontaneous Dislocation Annihilation Explains the Breakdown of the Power Law of Steady State Deformation. Physica Status Solidi A, 2001, 184, 257-261.	1.7	8
70	Deformation Induced Misorientations: Initial Stage of Subgrain Formation as a Plastic Instability. Physica Status Solidi A, 2001, 186, 1-16.	1.7	16
71	Creep of Die-Cast Light-Weight Mg-Al-base Alloy AZ91hp. Advanced Engineering Materials, 2000, 2, 349-355.	3.5	59
72	Dynamic recovery: sufficient mechanism in the hot deformation of Al (<99.99). Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 290, 95-107.	5.6	165

#	Article	IF	CITATIONS
73	On the relaxation of the long-range internal stresses of deformed copper upon unloading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 276, 186-194.	5.6	27
74	Harper-Dorn Creep — a Myth?. Physica Status Solidi A, 1999, 171, 467-474.	1.7	48
75	Evolution of dislocation structure in martensitic steels: the subgrain size as a sensor for creep strain and residual creep life. Steel Research = Archiv Für Das Eisenhüttenwesen, 1999, 70, 274-278.	0.3	22
76	Internal stresses in dislocation subgrain structures. Computational Materials Science, 1998, 13, 148-153.	3.0	11
77	Comparison of Substructures in High Temperature Deformed Aluminium Alloys by Polarised Optical, Scanning and Transmission Electron Microscopes. High Temperature Materials and Processes, 1998, 17,	1.4	8
78	Dynamics of Recovery and Recrystallization. Materials Science Forum, 1996, 217-222, 31-42.	0.3	38
79	Long-range internal stresses in cell and subgrain structures of copper during deformation at constant stress. Acta Materialia, 1996, 44, 4337-4350.	7.9	63
80	Geometric dynamic recrystallization in hot torsion of Alî—,5Mgî—,0.6Mn (AA5083). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 205, 23-30.	5.6	159
81	The influence of friction on plastic deformation in compression tests. Physica Status Solidi A, 1996, 156, 305-315.	1.7	20
82	Deformation kinetics at constant structure during work hardening and steady state deformation of pure aluminium. Physica Status Solidi A, 1996, 157, 329-337.	1.7	6
83	Microstructure and deformation rate during long-term cyclic creep of the martensitic steel X22CrMoV12-1. Steel Research = Archiv F¼r Das Eisenhüttenwesen, 1995, 66, 394-401.	0.3	10
84	Composite modeling of stress change response in steady-state creep. Physica Status Solidi A, 1994, 144, 343-352.	1.7	6
85	Long-Range Internal Stresses in the Transition from Cell to Subgrain Structures. Key Engineering Materials, 1994, 97-98, 461-466.	0.4	9
86	Modelling high temperature creep of academic and industrial materials using the composite model. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 164, 290-294.	5.6	21
87	On the Constitutive Laws of Plastic Deformation of InP Single Crystals at High Temperatures. Physica Status Solidi A, 1993, 137, 363-379.	1.7	4
88	Dynamic grain growth a restoration mechanism in 99.999 Al. Scripta Metallurgica Et Materialia, 1993, 28, 1299-1304.	1.0	35
89	Long-range internal stresses in steady-state subgrain structures. Scripta Metallurgica Et Materialia, 1993, 29, 7-12.	1.0	13
90	Creep of Pure Materials and Alloys. High Temperature Materials and Processes, 1993, 12, 31-48.	1.4	6

#	Article	IF	CITATIONS
91	Subgrain-boundary migration during creep of lif III. Stress reduction experiments. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1992, 66, 717-728.	0.6	27
92	Subgrain boundary migration during creep of lif: I. Recombination of subgrain boundaries. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1992, 65, 757-770.	0.6	26
93	Subgrain boundary migration during creep of lif II. Constant-stress experiments. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1992, 66, 27-40.	0.6	19
94	Subgrain growth during creep of a tempered martensitic 12% Crâ€steel. Steel Research = Archiv Für Das Eisenhüttenwesen, 1991, 62, 72-74.	0.3	19
95	Does the "natural―third power law of steady state creep hold for pure aluminium?. Scripta Metallurgica Et Materialia, 1990, 24, 1837-1842.	1.0	57
96	Two mechanisms of dislocation motion during creep. Acta Metallurgica, 1989, 37, 2439-2453.	2.1	71
97	Stress dependence of the creep rate at constant dislocation structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 112, 93-106.	5.6	38
98	On the natural law of steady state creep. Scripta Metallurgica, 1989, 23, 1419-1424.	1.2	23
99	Subgrain Boundary Migration During Creep of LiF. , 1989, , 875-880.		2
100	On the interpretation of the "Internal stress―determined from dip tests during creep of Al-5at.%Mg. Materials Science and Engineering, 1987, 86, 145-158.	0.1	33
101	Transient Creep of an Al-5at%Mg Solid Solution. , 1985, , 773-778.		8
102	Double etching — a simple method of investigating subboundary migration during creep. Materials Science and Engineering, 1984, 67, L9-L14.	0.1	8
103	On the evolution of the dislocation structure during work hardening and creep. Scripta Metallurgica, 1984, 18, 1383-1388.	1.2	28
104	On modelling steady state and transient deformation at elevated temperature. Scripta Metallurgica, 1982, 16, 1353-1357.	1.2	15
105	New technique for evaluating long range internal back stresses. Acta Metallurgica, 1982, 30, 1705-1715.	2.1	75
106	Coarsening of the dislocation structure after stress reduction during creep of NaCl single crystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1981, 44, 1065-1084.	0.6	36
107	Comparison between the cell structures produced in aluminium by cycling and by monotonic creep. Acta Metallurgica, 1980, 28, 519-537.	2.1	36
108	Dislocation Structure in Polycrystalline AlZn During Transient and Steady State Creep. , 1979, , 265-270.		16

#	Article	IF	CITATIONS
109	Stress dependence of the strain rate of Al-11 wt.% Zn at elevated temperature. Acta Metallurgica, 1977, 25, 1531-1538.	2.1	25
110	Dynamic recovery during and after steady state deformation of Al-11wt%Zn. Acta Metallurgica, 1976, 24, 1027-1039.	2.1	95
111	Transient creep and recovery after stress reduction during steady state creep of AlZn. Acta Metallurgica, 1976, 24, 293-297.	2.1	58
112	Activation analysis of the steady-state deformation of single- and polycrystalline sodium chloride. Philosophical Magazine and Journal, 1973, 28, 245-259.	1.7	12
113	Role of Dislocation Annihilation during Steadyâ€State Deformation. Physica Status Solidi (B): Basic Research, 1971, 45, 561-571.	1.5	75
114	On the stress dependence of the stationary deformation rate. Acta Metallurgica, 1969, 17, 959-966.	2.1	65
115	Über das Kriechverhalten von NaClâ€Einkristallen. Physica Status Solidi (B): Basic Research, 1967, 20, 629-642.	1.5	89
116	Structure Evolution and Deformation Resistance in Production and Application of Ultrafine-Grained	0.3	5

Structure Evolution and Deformation Resistance in Production and Application of Ultrafine-Grained Materials $\hat{a} \in$ the Concept of Steady-State Grains. Materials Science Forum, 0, 683, 163-181. 116