
Daniel S W Ting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8265403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA - Journal of the American Medical Association, 2017, 318, 2211.	3.8	1,442
2	Digital technology and COVID-19. Nature Medicine, 2020, 26, 459-461.	15.2	997
3	Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 2019, 103, 167-175.	2.1	754
4	Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045. Ophthalmology, 2021, 128, 1580-1591.	2.5	680
5	Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clinical and Experimental Ophthalmology, 2016, 44, 260-277.	1.3	640
6	Deep learning in ophthalmology: The technical and clinical considerations. Progress in Retinal and Eye Research, 2019, 72, 100759.	7.3	300
7	Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. Npj Digital Medicine, 2021, 4, 65.	5.7	294
8	Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Progress in Retinal and Eye Research, 2021, 82, 100900.	7.3	261
9	Logistic regression was as good as machine learning for predicting major chronic diseases. Journal of Clinical Epidemiology, 2020, 122, 56-69.	2.4	245
10	Novel Coronavirus disease 2019 (COVID-19): The importance of recognising possible early ocular manifestation and using protective eyewear. British Journal of Ophthalmology, 2020, 104, 297-298.	2.1	235
11	Digital Screen Time During the COVID-19 Pandemic: Risk for a Further Myopia Boom?. American Journal of Ophthalmology, 2021, 223, 333-337.	1.7	217
12	Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs. New England Journal of Medicine, 2020, 382, 1687-1695.	13.9	214
13	Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. The Lancet Digital Health, 2019, 1, e35-e44.	5.9	205
14	Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmology, 2019, 137, 1353.	1.4	188
15	Artificial intelligence for diabetic retinopathy screening: a review. Eye, 2020, 34, 451-460.	1.1	183
16	An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Diabetes Care, 2018, 41, 2509-2516.	4.3	175
17	Developing specific reporting guidelines for diagnostic accuracy studies assessing Al interventions: The STARD-Al Steering Group. Nature Medicine, 2020, 26, 807-808.	15.2	166
18	Cost-effectiveness of a National Telemedicine Diabetic Retinopathy Screening Program in Singapore. Ophthalmology, 2016, 123, 2571-2580.	2.5	153

#	Article	IF	CITATIONS
19	Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. The Lancet Digital Health, 2020, 2, e240-e249.	5.9	152
20	Optical Coherence Tomographic Angiography in Type 2 Diabetes and Diabetic Retinopathy. JAMA Ophthalmology, 2017, 135, 306.	1.4	151
21	Al for medical imaging goes deep. Nature Medicine, 2018, 24, 539-540.	15.2	138
22	A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. Nature Biomedical Engineering, 2021, 5, 498-508.	11.6	131
23	A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. The Lancet Digital Health, 2020, 2, e295-e302.	5.9	130
24	Preparedness among Ophthalmologists: During and Beyond the COVID-19 Pandemic. Ophthalmology, 2020, 127, 569-572.	2.5	120
25	Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology. British Journal of Ophthalmology, 2021, 105, 158-168.	2.1	110
26	Artificial Intelligence Screening for Diabetic Retinopathy: the Real-World Emerging Application. Current Diabetes Reports, 2019, 19, 72.	1.7	107
27	The promise of artificial intelligence: a review of the opportunities and challenges of artificial intelligence in healthcare. British Medical Bulletin, 2021, 139, 4-15.	2.7	106
28	Digital health during COVID-19: lessons from operationalising new models of care in ophthalmology. The Lancet Digital Health, 2021, 3, e124-e134.	5.9	101
29	CHOROIDAL VASCULARITY INDEX. Retina, 2017, 37, 1120-1125.	1.0	97
30	Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs. The Lancet Digital Health, 2021, 3, e306-e316.	5.9	93
31	Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. The Lancet Digital Health, 2020, 2, e526-e536.	5.9	83
32	Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study. The Lancet Digital Health, 2021, 3, e317-e329.	5.9	78
33	Blockchain applications in health care for COVID-19 and beyond: a systematic review. The Lancet Digital Health, 2021, 3, e819-e829.	5.9	77
34	A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nature Medicine, 2021, 27, 1663-1665.	15.2	76
35	Choroidal Thickness Changes in Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy: A 12-Month Prospective Study. American Journal of Ophthalmology, 2016, 164, 128-136.e1.	1.7	73
36	Artificial intelligence for diabetic retinopathy screening, prediction and management. Current Opinion in Ophthalmology, 2020, 31, 357-365.	1.3	70

#	Article	IF	CITATIONS
37	Coronavirus disease 2019 (COVID-19): an evidence map of medical literature. BMC Medical Research Methodology, 2020, 20, 177.	1.4	68
38	Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study. The Lancet Digital Health, 2021, 3, e486-e495.	5.9	65
39	Optical Coherence Tomography Angiography in Diabetes and Diabetic Retinopathy. Journal of Clinical Medicine, 2020, 9, 1723.	1.0	64
40	Artificial Intelligence to Stratify Severity of Age-Related Macular Degeneration (AMD) and Predict Risk of Progression to Late AMD. Translational Vision Science and Technology, 2020, 9, 25.	1.1	61
41	Methodological Challenges of Deep Learning in Optical Coherence Tomography for Retinal Diseases: A Review. Translational Vision Science and Technology, 2020, 9, 11.	1.1	56
42	Artificial intelligence, the internet of things, and virtual clinics: ophthalmology at the digital translation forefront. The Lancet Digital Health, 2020, 2, e8-e9.	5.9	55
43	Different fundus imaging modalities and technical factors in Al screening for diabetic retinopathy: a review. Eye and Vision (London, England), 2020, 7, 21.	1.4	55
44	Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: a multi-ethnic study. Npj Digital Medicine, 2019, 2, 24.	5.7	53
45	Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images. Communications Biology, 2020, 3, 15.	2.0	48
46	Optic Disc Classification by Deep Learning versus Expert Neuroâ€Ophthalmologists. Annals of Neurology, 2020, 88, 785-795.	2.8	48
47	CHOROIDAL VASCULAR HYPERPERMEABILITY AS A PREDICTOR OF TREATMENT RESPONSE FOR POLYPOIDAL CHOROIDAL VASCULOPATHY. Retina, 2018, 38, 1509-1517.	1.0	46
48	Comparison of swept source optical coherence tomography and spectral domain optical coherence tomography in polypoidal choroidal vasculopathy. Clinical and Experimental Ophthalmology, 2015, 43, 815-819.	1.3	42
49	Deep Learning Approach for Automated Detection of Myopic Maculopathy and Pathologic Myopia in Fundus Images. Ophthalmology Retina, 2021, 5, 1235-1244.	1.2	40
50	Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening. Translational Vision Science and Technology, 2020, 9, 22.	1.1	39
51	Artificial intelligence-assisted telemedicine platform for cataract screening and management: a potential model of care for global eye health. British Journal of Ophthalmology, 2019, 103, 1537-1538.	2.1	38
52	Next generation telemedicine platforms to screen and triage. British Journal of Ophthalmology, 2020, 104, 299-300.	2.1	37
53	Choroidal Remodeling in Age-related Macular Degeneration and Polypoidal Choroidal Vasculopathy: A 12-month Prospective Study. Scientific Reports, 2017, 7, 7868.	1.6	36
54	An Ophthalmologist's Guide to Deciphering Studies in Artificial Intelligence. Ophthalmology, 2019, 126, 1475-1479.	2.5	35

4

#	Article	IF	CITATIONS
55	Retinal microvascular signs in COVID-19. British Journal of Ophthalmology, 2022, 106, 1308-1312.	2.1	33
56	Accuracy of a Deep Learning System for Classification of Papilledema Severity on Ocular Fundus Photographs. Neurology, 2021, 97, e369-e377.	1.5	33
57	Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy. Ophthalmology, 2022, 129, 171-180.	2.5	33
58	Eyeing cardiovascular risk factors. Nature Biomedical Engineering, 2018, 2, 140-141.	11.6	32
59	Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection. Npj Digital Medicine, 2020, 3, 123.	5.7	32
60	Clinical Applicability of Deep Learning System in Detecting Tuberculosis with Chest Radiography. Radiology, 2018, 286, 729-731.	3.6	30
61	Global Assessment of Retinal Arteriolar, Venular and Capillary Microcirculations Using Fundus Photographs and Optical Coherence Tomography Angiography in Diabetic Retinopathy. Scientific Reports, 2019, 9, 11751.	1.6	30
62	Artificial Intelligence in Cornea, Refractive Surgery, and Cataract: Basic Principles, Clinical Applications, and Future Directions. Asia-Pacific Journal of Ophthalmology, 2021, 10, 268-281.	1.3	30
63	Shapley variable importance cloud for interpretable machine learning. Patterns, 2022, 3, 100452.	3.1	29
64	COVID-19: Ocular Manifestations and the APAO Prevention Guidelines for Ophthalmic Practices. Asia-Pacific Journal of Ophthalmology, 2020, 9, 281-284.	1.3	28
65	Technical and imaging factors influencing performance of deep learning systems for diabetic retinopathy. Npj Digital Medicine, 2020, 3, 40.	5.7	28
66	New digital models of care in ophthalmology, during and beyond the COVID-19 pandemic. British Journal of Ophthalmology, 2022, 106, 452-457.	2.1	28
67	The era of artificial intelligence and virtual reality: transforming surgical education in ophthalmology. British Journal of Ophthalmology, 2021, 105, 1325-1328.	2.1	27
68	Application of artificial intelligence in cataract management: current and future directions. Eye and Vision (London, England), 2022, 9, 3.	1.4	27
69	Artificial Intelligence and Radiology: Collaboration Is Key. Journal of the American College of Radiology, 2018, 15, 781-783.	0.9	25
70	Deep learning for retinopathy of prematurity screening. British Journal of Ophthalmology, 2019, 103, 577-579.	2.1	25
71	Real-World Treatment Outcomes of Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in Asians. Ophthalmology Retina, 2020, 4, 403-414.	1.2	25
72	Effectiveness of an Ophthalmic Hospital-Based Virtual Service during the COVID-19 Pandemic. Ophthalmology, 2021, 128, 942-945.	2.5	25

#	Article	IF	CITATIONS
73	Light and portable novel device for diabetic retinopathy screening. Clinical and Experimental Ophthalmology, 2012, 40, e40-6.	1.3	23
74	Detection of features associated with neovascular age-related macular degeneration in ethnically distinct data sets by an optical coherence tomography: trained deep learning algorithm. British Journal of Ophthalmology, 2021, 105, 1133-1139.	2.1	23
75	Application of 5G Technology to Conduct Real-Time Teleretinal Laser Photocoagulation for the Treatment of Diabetic Retinopathy. JAMA Ophthalmology, 2021, 139, 975.	1.4	23
76	Deep Learning and Transfer Learning for Optic Disc Laterality Detection: Implications for Machine Learning in Neuro-Ophthalmology. Journal of Neuro-Ophthalmology, 2020, 40, 178-184.	0.4	22
77	Ophthalmology simulation for undergraduate and postgraduate clinical education. International Journal of Ophthalmology, 2016, 9, 920-4.	0.5	21
78	Evolving Practice Patterns in Singapore's Public Sector Ophthalmology Centers During the COVID-19 Pandemic. Asia-Pacific Journal of Ophthalmology, 2020, 9, 285-290.	1.3	21
79	Training in the year of the eye: the impact of the COVID-19 pandemic on ophthalmic education. British Journal of Ophthalmology, 2020, 104, bjophthalmol-2020-316991.	2.1	20
80	Impact of Artificial Intelligence on Medical Education in Ophthalmology. Translational Vision Science and Technology, 2021, 10, 14.	1.1	20
81	Updates in deep learning research in ophthalmology. Clinical Science, 2021, 135, 2357-2376.	1.8	19
82	Proliferative diabetic retinopathy: laser or eye injection?. Lancet, The, 2017, 389, 2165-2166.	6.3	18
83	Artificial Intelligence in Ophthalmology: Evolutions in Asia. Asia-Pacific Journal of Ophthalmology, 2020, 9, 78-84.	1.3	18
84	Automated and Computer-Assisted Detection, Classification, and Diagnosis of Diabetic Retinopathy. Telemedicine Journal and E-Health, 2020, 26, 544-550.	1.6	17
85	Reporting on deep learning algorithms in health care. The Lancet Digital Health, 2019, 1, e328-e329.	5.9	16
86	Artificial intelligence in myopia: current and future trends. Current Opinion in Ophthalmology, 2021, 32, 413-424.	1.3	15
87	Blockchain Technology for Ophthalmology: Coming of Age?. Asia-Pacific Journal of Ophthalmology, 2021, 10, 343-347.	1.3	14
88	Deep Learning for Automated Sorting of Retinal Photographs. Ophthalmology Retina, 2020, 4, 793-800.	1.2	14
89	Diabetic retinopathy–screening and management by Australian GPs. Australian Family Physician, 2011, 40, 233-8.	0.5	14
90	Retinal Video Recording. Ophthalmology, 2011, 118, 1588-1593.	2.5	13

#	Article	IF	CITATIONS
91	Telemedicine for Diabetic Retinopathy Screening. JAMA Ophthalmology, 2017, 135, 722.	1.4	13
92	Using artificial intelligence for diabetic retinopathy screening: Policy implications. Indian Journal of Ophthalmology, 2021, 69, 2993.	0.5	13
93	Generative Adversarial Networks (GANs) for Retinal Fundus Image Synthesis. Lecture Notes in Computer Science, 2019, , 289-302.	1.0	12
94	Anterior segment optical coherence tomography angiography for iris vasculature in pigmented eyes. British Journal of Ophthalmology, 2021, 105, 929-934.	2.1	11
95	Generative adversarial networks in ophthalmology: what are these and how can they be used?. Current Opinion in Ophthalmology, 2021, 32, 459-467.	1.3	11
96	Spatial Technology Assessment of Green Space Exposure andÂMyopia. Ophthalmology, 2022, 129, 113-117.	2.5	11
97	Artificial Intelligence and Deep Learning in Ophthalmology. , 2021, , 1-34.		10
98	Pathologic myopia: advances in imaging and the potential role of artificial intelligence. British Journal of Ophthalmology, 2023, 107, 600-606.	2.1	10
99	25-years Trends and Risk factors related to Surgical Outcomes of Giant Retinal Tear-Rhegmatogenous Retinal Detachments. Scientific Reports, 2020, 10, 5474.	1.6	9
100	Artificial intelligence and machine learning for Alzheimer's disease: let's not forget about the retina. British Journal of Ophthalmology, 2021, 105, 593-594.	2.1	9
101	Is artificial intelligence a solution to the myopia pandemic?. British Journal of Ophthalmology, 2021, 105, 741-744.	2.1	9
102	The associations of high academic performance with childhood ametropia prevalence and myopia development in China. Annals of Translational Medicine, 2021, 9, 745-745.	0.7	9
103	Ocular Imaging Standardization for Artificial Intelligence Applications in Ophthalmology: the Joint Position Statement and Recommendations From the Asia-Pacific Academy of Ophthalmology and the Asia-Pacific Ocular Imaging Society. Asia-Pacific Journal of Ophthalmology, 2021, 10, 348-349.	1.3	9
104	Novel technical and privacy-preserving technology for artificial intelligence in ophthalmology. Current Opinion in Ophthalmology, 2022, Publish Ahead of Print, .	1.3	9
105	Advances in OCT Imaging in Myopia and Pathologic Myopia. Diagnostics, 2022, 12, 1418.	1.3	9
106	Observations and Lessons Learned From the Artificial Intelligence Studies for Diabetic Retinopathy Screening. JAMA Ophthalmology, 2019, 137, 994.	1.4	7
107	Technical and clinical challenges of A.I. in retinal image analysis. , 2019, , 445-466.		7
108	Comparison of macular structural and vascular changes in neuromyelitis optica spectrum disorder and primary open angle glaucoma: a cross-sectional study. British Journal of Ophthalmology, 2021, 105, 354-360.	2.1	7

#	Article	IF	CITATIONS
109	Artificial intelligence for diagnosis of inherited retinal disease: an exciting opportunity and one step forward. British Journal of Ophthalmology, 2021, 105, 1187-1189.	2.1	7
110	Evaluation of pediatric ophthalmologists' perspectives of artificial intelligence in ophthalmology. Journal of AAPOS, 2021, 25, 164.e1-164.e5.	0.2	7
111	Global Trends in Ophthalmic Practices in Response to COVID-19. Ophthalmology, 2021, 128, 1505-1515.	2.5	7
112	Digital Education in Ophthalmology. Asia-Pacific Journal of Ophthalmology, 2022, 11, 267-272.	1.3	7
113	Prediction of visual outcomes by an artificial neural network following intravitreal injection and laser therapy for retinopathy of prematurity. British Journal of Ophthalmology, 2019, 104, bjophthalmol-2019-314860.	2.1	6
114	Generative adversarial networks to predict treatment response for neovascular age-related macular degeneration: interesting, but is it useful?. British Journal of Ophthalmology, 2020, 104, 1629-1630.	2.1	6
115	The potential application of artificial intelligence for diagnosis and management of glaucoma in adults. British Medical Bulletin, 2020, 134, 21-33.	2.7	6
116	Digital health in medicine: Important considerations in evaluating health economic analysis. The Lancet Regional Health - Western Pacific, 2022, 23, 100476.	1.3	6
117	Development and Validation of a Deep Learning System for Detection of Active Pulmonary Tuberculosis on Chest Radiographs: Clinical and Technical Considerations. Clinical Infectious Diseases, 2019, 69, 748-750.	2.9	5
118	Artificial Intelligence and Deep Learning in Ophthalmology. , 2022, , 1519-1552.		5
119	Blockchain: chaining digital health to a new era. Annals of Translational Medicine, 2020, 8, 696-696.	0.7	4
120	Computer-aided detection and abnormality score for the outer retinal layer in optical coherence tomography. British Journal of Ophthalmology, 2022, 106, 1301-1307.	2.1	4
121	Artificial Intelligence for Prediction of Anti–VEGF Treatment Burden in Retinal Diseases: Towards Precision Medicine. Ophthalmology Retina, 2021, 5, 601-603.	1.2	4
122	Deep learning for identification of peripheral retinal degeneration using ultra-wide-field fundus images: is it sufficient for clinical translation?. Annals of Translational Medicine, 2020, 8, 611-611.	0.7	3
123	Singapore Eye Lesions Analyzer (SELENA): The Deep Learning System for Retinal Diseases. , 2021, , 177-185.		3
124	Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning. Frontiers in Physiology, 2021, 12, 649316.	1.3	3
125	Enhanced Detection of Referable Diabetic Retinopathy via DCNNs and Transfer Learning. Lecture Notes in Computer Science, 2019, , 282-288.	1.0	2
126	SARS-CoV-2 and the Eye: Implications for the Retina Specialist From Human Coronavirus Outbreaks and Animal Models. Journal of Vitreoretinal Diseases, 2020, 4, 411-419.	0.2	2

#	Article	IF	CITATIONS
127	Interpretation of artificial intelligence studies for the ophthalmologist. Current Opinion in Ophthalmology, 2020, 31, 351-356.	1.3	2
128	Al papers in ophthalmology made simple. Eye, 2020, 34, 1947-1949.	1.1	2
129	The associations of population mobility in HIV disease severity and mortality rate in China. Annals of Translational Medicine, 2021, 9, 315-315.	0.7	2
130	Augmented Intelligence in Ophthalmology: The Six Rights. Asia-Pacific Journal of Ophthalmology, 2021, 10, 231-233.	1.3	1
131	Eyeing severe diabetes upfront. Nature Biomedical Engineering, 2022, 6, 1321-1322.	11.6	1
132	Proposal of a new slit-lamp shield for ophthalmic examination and assessment of its effectiveness using computational simulations. Arquivos Brasileiros De Oftalmologia, 2023, 86, .	0.2	0