Rajendra Singh Rathore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/826498/publications.pdf Version: 2024-02-01

PAIENDRA SINCH PATHORE

#	Article	IF	CITATIONS
1	ï€-Extended dibenzo[<i>g</i> , <i>p</i>]chrysenes. Organic Chemistry Frontiers, 2021, 8, 2393-2401.	2.3	5
2	Regioselectivity in the Scholl Reaction: Mono and Double [7]Helicenes. Organic Letters, 2021, 23, 5170-5174.	2.4	17
3	Angular ladder-type <i>meta</i> -phenylenes: synthesis and electronic structural analysis. Organic Chemistry Frontiers, 2020, 7, 3215-3222.	2.3	4
4	Electronâ€Transferâ€Induced Selfâ€Assembly of a Molecular Tweezer Platform. Chemistry - A European Journal, 2020, 26, 14085-14089.	1.7	7
5	Highly robust cation radical salts: Aromatic oxidants from cycloannulated aromatic donors. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111882.	2.0	2
6	Accessing highly electron-rich calix[n]arene (n = 4 and 8) derivatives from acid-catalyzed condensation of 1,3,5-tripropoxybenzene. Tetrahedron Letters, 2019, 60, 151215.	0.7	0
7	Redox-Induced Molecular Actuators: The Case of Oxy-Alternate Bridged Cyclotetraveratrylene. Organic Letters, 2019, 21, 7987-7991.	2.4	2
8	Charge-transfer or excimeric state? Exploring the nature of the excited state in cofacially arrayed polyfluorene derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 125-130.	2.0	2
9	Non- planar dodecaalkoxy-hexa-peri-hexabenzocoronene with six reversible oxidation States. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111881.	2.0	1
10	Role of Conserved Histidine and Serine in the HCXXXXXRS Motif of Human Dual-Specificity Phosphatase 5. Journal of Chemical Information and Modeling, 2019, 59, 1563-1574.	2.5	1
11	Photophysical properties of 1,3,6,8-tetraarylpyrenes and their cation radicals. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 209-218.	2.0	10
12	Discovery and characterization of halogenated xanthene inhibitors of DUSP5 as potential photodynamic therapeutics. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 114-131.	2.0	6
13	Calix[4]areneâ€Based Bis(Nitric Oxide) Complexes: Synthesis, Physical Properties, and Structural Characterization. Chemistry - an Asian Journal, 2019, 14, 542-546.	1.7	2
14	From Intramolecular (Circular) in an Isolated Molecule to Intermolecular Hole Delocalization in a Twoâ€Dimensional Solidâ€State Assembly: The Case of Pillarene. Angewandte Chemie, 2018, 130, 2166-2171.	1.6	1
15	Strength of π-Stacking, from Neutral to Cation: Precision Measurement of Binding Energies in an Isolated π-Stacked Dimer. Journal of Physical Chemistry Letters, 2018, 9, 2058-2061.	2.1	15
16	Probing Charge Delocalization in Solid State Polychromophoric Cation Radicals Using X-ray Crystallography and DFT Calculations. Journal of Physical Chemistry C, 2018, 122, 9339-9345.	1.5	6
17	Ask Not How Many, But Where They Are: Substituents Control Energetic Ordering of Frontier Orbitals/Electronic Structures in Isomeric Methoxy-Substituted Dibenzochrysenes. Journal of Physical Chemistry C, 2018, 122, 2539-2545.	1.5	19
18	Study of Förster Resonance Energy Transfer to Lipid Domain Markers Ascertains Partitioning of Semisynthetic Lipidated N-Ras in Lipid Raft Nanodomains. Biochemistry, 2018, 57, 872-881.	1.2	13

#	Article	IF	CITATIONS
19	FHBC, a Hexa―peri â€hexabenzocoronene–Fluorene Hybrid: A Platform for Highly Soluble, Easily Functionalizable HBCs with an Expanded Graphitic Core. Angewandte Chemie, 2018, 130, 798-802.	1.6	5
20	From Intramolecular (Circular) in an Isolated Molecule to Intermolecular Hole Delocalization in a Twoâ€Dimensional Solidâ€State Assembly: The Case of Pillarene. Angewandte Chemie - International Edition, 2018, 57, 2144-2149.	7.2	8
21	From Static to Dynamic: Electron Density of HOMO at Biaryl Linkage Controls the Mechanism of Hole Delocalization. Journal of the American Chemical Society, 2018, 140, 4765-4769.	6.6	11
22	FHBC, a Hexaâ€ <i>peri</i> â€hexabenzocoronene–Fluorene Hybrid: A Platform for Highly Soluble, Easily Functionalizable HBCs with an Expanded Graphitic Core. Angewandte Chemie - International Edition, 2018, 57, 790-794.	7.2	12
23	Vertical vs. adiabatic ionization energies in solution and gas-phase: probing ionization-induced reorganization in conformationally-mobile bichromophoric actuators using photoelectron spectroscopy, electrochemistry and theory. Physical Chemistry Chemical Physics, 2018, 20, 25615-25622.	1.3	9
24	Dynamic Phosphorylation of the C Terminus of Hsp70 Regulates the Mitochondrial Import of SOD2 and Redox Balance. Cell Reports, 2018, 25, 2605-2616.e7.	2.9	40
25	π-π stacking vs. C–H/π interaction: Excimer formation and charge resonance stabilization in van der Waals clusters of 9,9′-dimethylfluorene. Journal of Chemical Physics, 2018, 149, 134314.	1.2	10
26	An Electronâ€Rich Calix[4]areneâ€Based Receptor with Unprecedented Binding Affinity for Nitric Oxide. Chemistry - A European Journal, 2018, 24, 17439-17443.	1.7	6
27	Pyrene-Like HOMO Governs Polaron Delocalization in Model Graphitic Strips: A Combined Experimental and Computational Analysis. Journal of Physical Chemistry C, 2018, 122, 24527-24534.	1.5	1
28	Highly Selective Synthesis of Pillar[<i>n</i>]arene (<i>n</i> = 5, 6). Organic Letters, 2018, 20, 6583-6586.	2.4	24
29	Game of Frontier Orbitals: A View on the Rational Design of Novel Charge-Transfer Materials. Journal of Physical Chemistry Letters, 2018, 9, 3978-3986.	2.1	25
30	Synthesis of Doubly Annulated <i>m</i> â€Terphenylâ€Based Molecular Tweezers and Their Chargeâ€Transfer Complexes with DDQ as a Guest. Chemistry - A European Journal, 2018, 24, 13106-13109.	1.7	8
31	An electron-transfer induced conformational transformation: from non-cofacial "sofa―to cofacial "boat―in cyclotetraveratrylene (CTTV) and formation of charge transfer complexes. Organic and Biomolecular Chemistry, 2018, 16, 5712-5717.	1.5	9
32	Molecular Actuators in Action: Electron-Transfer-Induced Conformation Transformation in Cofacially Arrayed Polyfluorenes. Journal of Physical Chemistry Letters, 2018, 9, 4233-4238.	2.1	7
33	Spreading Electron Density Thin: Increasing the Chromophore Size in Polyaromatic Wires Decreases Interchromophoric Electronic Coupling. Journal of Physical Chemistry C, 2018, 122, 17668-17675.	1.5	7
34	The Role of Torsional Dynamics on Hole and Exciton Stabilization in Ï€â€Stacked Assemblies: Design of Rigid Torsionomers of a Cofacial Bifluorene. Angewandte Chemie - International Edition, 2018, 57, 8189-8193.	7.2	16
35	The Role of Torsional Dynamics on Hole and Exciton Stabilization in π‣tacked Assemblies: Design of Rigid Torsionomers of a Cofacial Bifluorene. Angewandte Chemie, 2018, 130, 8321-8325.	1.6	4
36	Towards the rational design of novel charge-transfer materials: biaryls with a dihedral angle-independent hole delocalization mechanism. Chemical Communications, 2018, 54, 5851-5854.	2.2	5

#	Article	IF	CITATIONS
37	Hückel Theory + Reorganization Energy = Marcus–Hush Theory: Breakdown of the 1/ <i>n</i> Trend in Ï€-Conjugated Poly- <i>p</i> -phenylene Cation Radicals Is Explained. Journal of Physical Chemistry C, 2017, 121, 1552-1561.	1.5	27
38	Poly- <i>p</i> -hydroquinone Ethers: Isoenergetic Molecular Wires with Length-Invariant Oxidation Potentials and Cation Radical Excitation Energies. Journal of the American Chemical Society, 2017, 139, 4334-4337.	6.6	16
39	Isolation of a chiral anthracene cation radical: X-ray crystallography and computational interrogation of its racemization. Chemical Communications, 2017, 53, 2748-2751.	2.2	7
40	Nodal Arrangement of HOMO Controls the Turning On/Off the Electronic Coupling in Isomeric Polypyrene Wires. Journal of Physical Chemistry C, 2017, 121, 9202-9208.	1.5	14
41	Dihedralâ€Angleâ€Controlled Crossover from Static Hole Delocalization to Dynamic Hopping in Biaryl Cation Radicals. Angewandte Chemie - International Edition, 2017, 56, 266-269.	7.2	12
42	Dihedralâ€Angleâ€Controlled Crossover from Static Hole Delocalization to Dynamic Hopping in Biaryl Cation Radicals. Angewandte Chemie, 2017, 129, 272-275.	1.6	7
43	Unraveling the Coulombic Forces in Electronically Decoupled Bichromophoric Systems during Two Successive Electron Transfers. Chemistry - A European Journal, 2017, 23, 8834-8838.	1.7	8
44	Serendipitous discovery of light-induced (In Situ) formation of an Azo-bridged dimeric sulfonated naphthol as a potent PTP1B inhibitor. BMC Biochemistry, 2017, 18, 10.	4.4	7
45	Cofacially Arrayed Polyfluorenes: Spontaneous Formation of π-Stacked Assemblies in the Gas Phase. Journal of Physical Chemistry Letters, 2017, 8, 5272-5276.	2.1	9
46	When Substituents Do Not Matter: Frontier Orbitals Explain the Unusually High and Invariant Oxidation Potential in Alkoxy-, Alkyl-, and H-Substituted Iptycenes. Journal of Physical Chemistry Letters, 2017, 8, 4226-4230.	2.1	7
47	Dual Specificity Phosphatase 5â€Substrate Interaction: A Mechanistic Perspective. , 2017, 7, 1449-1461.		16
48	Through-Space or Through-Bond? The Important Role of Cofaciality in Orbital Reordering and Its Implications for Hole (De)stabilization in Polychromophoric Assemblies. Journal of Physical Chemistry C, 2017, 121, 15639-15643.	1.5	6
49	Effect of Facial Encumbrance on Excimer Formation and Charge Resonance Stabilization in Model Bichromophoric Assemblies. Journal of Physical Chemistry C, 2017, 121, 15580-15588.	1.5	10
50	Quantitative generation of cation radicals and dications using aromatic oxidants: effect of added electrolyte on the redox potentials of aromatic electron donors. Journal of Physical Organic Chemistry, 2016, 29, 227-233.	0.9	23
51	First Experimental Evidence for the Diverse Requirements of Excimer vs Hole Stabilization in π-Stacked Assemblies. Journal of Physical Chemistry Letters, 2016, 7, 3042-3045.	2.1	14
52	Interplay between Entropy and Enthalpy in (Intramolecular) Cyclophane-Like Folding versus (Intermolecular) Dimerization of Diarylalkane Cation Radicals. Journal of Physical Chemistry C, 2016, 120, 19558-19565.	1.5	8
53	Two's Company, Three's a Crowd: Exciton Localization in Cofacially Arrayed Polyfluorenes. Journal of Physical Chemistry Letters, 2016, 7, 2915-2920.	2.1	12
54	Energy Gap between the Poly-p-phenylene Bridge and Donor Groups Controls the Hole Delocalization in Donor–Bridge–Donor Wires. Journal of the American Chemical Society, 2016, 138, 16337-16344.	6.6	29

#	Article	IF	CITATIONS
55	Critical Role of the Secondary Binding Pocket in Modulating the Enzymatic Activity of DUSP5 toward Phosphorylated ERKs. Biochemistry, 2016, 55, 6187-6195.	1.2	5
56	Toroidal delocalization of a single electron through circularly-arrayed benzophenone chromophores in hexakis(4-benzoylphenyl)benzene. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 153-159.	2.0	5
57	Inclusion of Asymptotic Dependence of Reorganization Energy in the Modified Marcus-Based Multistate Model Accurately Predicts Hole Distribution in Poly- <i>p</i> phenylene Wires. Journal of Physical Chemistry C, 2016, 120, 6402-6408.	1.5	18
58	From Wires to Cables: Attempted Synthesis of 1,3,5-Trifluorenylcyclohexane as a Platform for Molecular Cables. Journal of Organic Chemistry, 2016, 81, 1627-1634.	1.7	0
59	A search for blues brothers: X-ray crystallographic/spectroscopic characterization of the tetraarylbenzidine cation radical as a product of aging of solid magic blue. Organic and Biomolecular Chemistry, 2016, 14, 2961-2968.	1.5	54
60	The HOMO Nodal Arrangement in Polychromophoric Molecules and Assemblies Controls the Interchromophoric Electronic Coupling. Angewandte Chemie - International Edition, 2015, 54, 14468-14472.	7.2	51
61	A Circle Has No End: Role of Cyclic Topology and Accompanying Structural Reorganization on the Hole Distribution in Cyclic and Linear Poly-xi>p-phenylene Molecular Wires. Journal of the American Chemical Society, 2015, 137, 14999-15006.	6.6	50
62	Experimental and theoretical study on the interaction of the pyridinium cation with a hexaarylbenzene-based receptor. Monatshefte Für Chemie, 2015, 146, 521-525.	0.9	14
63	Identification of inhibitors that target dual-specificity phosphatase 5 provide new insights into the binding requirements for the two phosphate pockets. BMC Biochemistry, 2015, 16, 19.	4.4	8
64	Does Koopmans' Paradigm for 1-Electron Oxidation Always Hold? Breakdown of IP/ <i>E</i> _{ox} Relationship for <i>p</i> -Hydroquinone Ethers and the Role of Methoxy Group Rotation. Journal of Physical Chemistry Letters, 2015, 6, 3373-3378.	2.1	22
65	Identification of Polysulfonated Inhibitors that Target Dual Specificity Phosphatase 5 and Provide New Insights into the Binding Requirements for Dualâ€Phosphate Substrate Pockets. FASEB Journal, 2015, 29, 1022.6.	0.2	0
66	ELECTRONIC COMMUNICATION IN COVALENTLY vs. NON-COVALENTLY BONDED POLYFLUORENE SYSTEMS: THE ROLE OF THE COVALENT LINKER , 2015, , .		0
67	Protein expression, characterization and activity comparisons of wild type and mutant DUSP5 proteins. BMC Biochemistry, 2014, 15, 27.	4.4	10
68	Key Role of End-Capping Groups in Optoelectronic Properties of Poly- <i>p</i> -phenylene Cation Radicals. Journal of Physical Chemistry C, 2014, 118, 21400-21408.	1.5	76
69	Subgap Two-Photon States in Polycyclic Aromatic Hydrocarbons: Evidence for Strong Electron Correlations. Journal of Physical Chemistry C, 2014, 118, 3331-3339.	1.5	23
70	Comment on "Synthesis, Characterization, and Structures of Persistent Aniline Radical Cation― It Is a Protonated Aniline and Not an Aniline Radical Cation. Angewandte Chemie, 2014, 126, 954-958.	1.6	3
71	Comment on "Synthesis, Characterization, and Structures of Persistent Aniline Radical Cation†It Is a Protonated Aniline and Not an Aniline Radical Cation. Angewandte Chemie - International Edition, 2014, 53, 938-942.	7.2	8
72	Controlling the Structure of Reactive Intermediates via Incipient Covalent Bonding with the Counterions: Coexistence of Two Distinct Forms of the C6F6Cation Radical in a Single Crystal. Journal of Physical Chemistry C. 2013. 117. 23568-23574.	1.5	2

#	Article	IF	CITATIONS
73	Grafting density effects, optoelectrical properties and nano-patterning of poly(para-phenylene) brushes. Journal of Materials Chemistry A, 2013, 1, 13426.	5.2	5
74	Interaction of protonated tyramine with a hexaarylbenzene-based receptor: Extraction and DFT study. Journal of Molecular Structure, 2013, 1047, 277-281.	1.8	7
75	A Practical Synthesis of 1,4,5,8-Tetramethoxyanthracene from Inexpensive and Readily Available 1,8-Dihydroxyanthraquinone. Synthesis, 2012, 44, 805-809.	1.2	9
76	Combined Theoretical and Experimental Study of the Complexation of a Hexaarylbenzene-Based Receptor with the Potassium Cation. Journal of Solution Chemistry, 2012, 41, 1812-1824.	0.6	2
77	Experimental and theoretical study on the cooperative interaction of the ethanolammonium cation with a hexaarylbenzene-based receptor. Chemical Physics, 2012, 406, 86-90.	0.9	4
78	Electrochemistry and Electrogenerated Chemiluminescence of π-Stacked Poly(fluorenemethylene) Oligomers. Multiple, Interacting Electron Transfers. Journal of the American Chemical Society, 2012, 134, 16265-16274.	6.6	52
79	Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals. Langmuir, 2012, 28, 71-83.	1.6	49
80	Cooperative interaction of protonated 1,4-diazabicyclo[2.2.2]octane with a hexaarylbenzene-based receptor: an experimental and theoretical study. Monatshefte Für Chemie, 2012, 143, 563-568.	0.9	0
81	Cooperative interaction of protonated hexamethylenetetramine with a hexaarylbenzene-based receptor: Experimental and theoretical study. Journal of Molecular Structure, 2012, 1014, 7-11.	1.8	13
82	Sequential Oxidative Transformation of Tetraarylethylenes to 9,10-Diarylphenanthrenes and Dibenzo[<i>g</i> , <i>p</i>]chrysenes using DDQ as an Oxidant. Organic Letters, 2011, 13, 1634-1637.	2.4	111
83	Experimental and theoretical study of the complexation of the thallium cation with a hexaarylbenzene-based receptor. Monatshefte Für Chemie, 2011, 142, 447-451.	0.9	1
84	Affinity capillary electrophoresis and density functional theory employed for the characterization of hexaarylbenzeneâ€based receptor complexation with alkali metal ions. Electrophoresis, 2011, 32, 981-987.	1.3	19
85	A combined extraction and DFT study on the complexation of H3O+ with a hexaarylbenzene-based receptor. Monatshefte FA1⁄4r Chemie, 2010, 141, 737-741.	0.9	18
86	Theoretical study on the complexation of the sodium cation with a hexaarylbenzene-based receptor. Monatshefte Für Chemie, 2010, 141, 1309-1311.	0.9	0
87	Crossover from Single-Step Tunneling to Multistep Hopping for Molecular Triplet Energy Transfer. Science, 2010, 328, 1547-1550.	6.0	101
88	Direct Observation of Electron-Transfer-Induced Conformational Transformation (Molecular) Tj ETQq0 0 0 rgBT /	Overlock 1.2	10 Tf 50 147 12
89	<i>ortho</i> -Phenylenes: Unusual Conjugated Oligomers with a Surprisingly Long Effective Conjugation Length. Journal of the American Chemical Society, 2010, 132, 13848-13857.	6.6	111
90	Probing the Arenium-Ion (ProtonTransfer) versus the Cation-Radical (Electron Transfer) Mechanism	1.7	204

of Scholl Reaction Using DDQ as Oxidant. Journal of Organic Chemistry, 2010, 75, 4748-4760.

#	Article	IF	CITATIONS
91	Preparation of a tetraphenylethylene-based emitter: Synthesis, structure and optoelectronic properties of tetrakis(pentaphenylphenyl)ethylene. Chemical Communications, 2010, 46, 1065.	2.2	77
92	Isolation and X-ray structural characterization of a dicationic homotrimer of 2,3,6,7-tetramethoxy-9,10-dimethylanthracene cation radical. Tetrahedron Letters, 2009, 50, 6687-6690.	0.7	7
93	Synthesis and electronic properties of nanometer-size symmetrical tetrakis(poly-p-phenylene)ethylenes. Tetrahedron Letters, 2009, 50, 6159-6162.	0.7	20
94	X-ray Structural Characterization of Charge Delocalization onto the Three Equivalent Benzenoid Rings in Hexamethoxytriptycene Cation Radical. Organic Letters, 2009, 11, 2253-2256.	2.4	27
95	Molecular Actuator: Redox-Controlled Clam-Like Motion in a Bichromophoric Electron Donor. Organic Letters, 2009, 11, 1939-1942.	2.4	44
96	A Versatile Preparation of Geläder-Type <i>p</i> -Terphenyls from a Readily Available Diacetylenic Precursor. Organic Letters, 2009, 11, 4656-4659.	2.4	32
97	Oxidative Câ^C Bond Formation (Scholl Reaction) with DDQ as an Efficient and Easily Recyclable Oxidant. Organic Letters, 2009, 11, 3474-3477.	2.4	247
98	A Versatile Synthesis of Electroactive Stilbenoprismands for Effective Binding of Metal Cations. Journal of Organic Chemistry, 2009, 74, 2080-2087.	1.7	28
99	Synthesis, Optical, and Electronic Properties of Soluble Poly- <i>p</i> phenylene Oligomers as Models for Molecular Wires. Journal of the American Chemical Society, 2009, 131, 1780-1786.	6.6	128
100	Octamethoxydibenzochrysene: isolation and X-ray crystallographic characterization of a twisted polyaromatic cation radical. Chemical Communications, 2009, , 2857.	2.2	39
101	Synthesis and electronic properties of iso-alkyl substituted hexa-peri-hexabenzocoronenes (HBC's) from a versatile new HBC synthon, hexakis(4-acetylphenyl)benzene. Tetrahedron Letters, 2008, 49, 4869-4872.	0.7	20
102	A Facile Synthesis of Elusive Alkoxy-Substituted Hexa- <i>peri-</i> hexabenzocoronene. Organic Letters, 2008, 10, 5139-5142.	2.4	73
103	Synthesis, Electronic Properties, and X-ray Structural Characterization of Tetrarylbenzo[1,2- <i>b</i> :4,5- <i>b</i> ′]difuran Cation Radicals. Organic Letters, 2008, 10, 3587-3590.	2.4	39
104	Isolation and X-ray structural characterization of tetraisopropylpyrene cation radical. Chemical Communications, 2008, , 1889.	2.2	37
105	Duplexiphane:  A Polyaromatic Receptor Containing Two Adjoined Δ-Shaped Cavities for an Efficient Hopping of a Single Silver Cation. Organic Letters, 2008, 10, 389-392.	2.4	16
106	Practical Synthesis of Unsymmetrical Tetraarylethylenes and Their Application for the Preparation of [Triphenylethyleneâ^'Spacerâ^'Triphenylethylene] Triads. Journal of Organic Chemistry, 2007, 72, 8054-8061.	1.7	102
107	Calculations of the Optical Spectra of Hydrocarbon Radical Cations Based on Koopmans' Theorem. Journal of Physical Chemistry A, 2007, 111, 1667-1676.	1.1	30
108	Electron Transfer Prompted Ejection of a Tightly Bound K+from the Ethereal Cavity of a Hexaarylbenzene-Based Receptor. Organic Letters, 2007, 9, 1291-1294.	2.4	39

#	Article	IF	CITATIONS
109	Convergent Synthesis of Alternating Fluorene-p-xylene Oligomers and Delineation of the (Silver) Cation-Induced Folding. Journal of the American Chemical Society, 2007, 129, 8458-8465.	6.6	25
110	Structural Characterization of Quaterphenyl Cation Radical:Â X-ray Crystallographic Evidence of Quinoidal Charge Delocalization in Poly-p-phenylene Cation Radicals. Journal of the American Chemical Society, 2007, 129, 8070-8071.	6.6	48
111	Preparation of Chiral Cholestanofluorene and Its Electron-Rich Derivatives for Isolation of a Stable Cationâ°'Radical Salt. Journal of Organic Chemistry, 2007, 72, 1765-1769.	1.7	12
112	Hexabenzo[4.4.4]propellane:  A Helical Molecular Platform for the Construction of Electroactive Materials. Organic Letters, 2007, 9, 4091-4094.	2.4	22
113	A New Class of Chiroptical Molecular Switches Based on the Redox-Induced Conformational Changes. Organic Letters, 2007, 9, 3977-3980.	2.4	20
114	Preparation of a Polymer-Supported Fluorene-Based Receptor for Quantitative and Efficient Binding of Silver Cations. Chemistry - A European Journal, 2007, 13, 6508-6513.	1.7	11
115	Intramolecular Electron Transfer in Cofacially π-Stacked Fluorenes: Evidence of Tunneling. Journal of Physical Chemistry B, 2006, 110, 1536-1540.	1.2	23
116	A Polyaromatic Receptor with an Ethereal Fence that Directs K+for Effective Cationâ~Ï€ Interaction. Journal of the American Chemical Society, 2006, 128, 5328-5329.	6.6	49
117	Toroidal Hopping of a Single Hole through the Circularly-Arrayed Naphthyl Groups in Hexanaphthylbenzene Cation Radical. Journal of Physical Chemistry A, 2006, 110, 13003-13006.	1.1	38
118	Simultaneous Ejection of Six Electrons at a Constant Potential by Hexakis(4-ferrocenylphenyl)benzene. Organic Letters, 2006, 8, 5041-5044.	2.4	72
119	Selective Intercalation of Cs+in the "V―Shaped Cavity of a Bichromophoric Anion Radical: Cs+Assisted ï€â~'sâ~'ï€-Delocalization of an Electron. Journal of Physical Chemistry A, 2006, 110, 9602-9606.	1.1	3
120	Novel potentiometric and optical silver ion-selective sensors with subnanomolar detection limits. Analytica Chimica Acta, 2006, 572, 1-10.	2.6	90
121	A Versatile and Conformationally Adaptable Fluorene-Based Receptor for Efficient Binding of Silver Cation. Journal of the American Chemical Society, 2005, 127, 8012-8013.	6.6	63
122	Redox-Induced Transformation from an Extended to a ?-Stacked Conformer in Acyclic Bis(catecholacetal)s of Acetylacetone. Angewandte Chemie - International Edition, 2005, 44, 2771-2774.	7.2	23
123	Intramolecular Câ^'H/Câ^'D Exchange in Cofacially Stacked Polyfluorenes via Electron-Induced Bond Activation. Journal of the American Chemical Society, 2005, 127, 5282-5283.	6.6	11
124	Soluble cycloannulated tetroxa[8]circulane derivatives: synthesis, optical and electrochemical properties, and generation of their robust cation–radical salts. Tetrahedron Letters, 2004, 45, 5267-5270.	0.7	53
125	Synthesis and Isolation of Polytrityl Cations by Utilizing Hexaphenylbenzene and Tetraphenylmethane Scaffolds. Journal of Organic Chemistry, 2004, 69, 1524-1530.	1.7	86
126	Hopping of a Single Hole inhexakis[4-(1,1,2-Triphenyl-ethenyl)phenyl]benzene Cation Radical through the Hexaphenylbenzene Propeller. Organic Letters, 2004, 6, 1689-1692.	2.4	75

#	Article	IF	CITATIONS
127	Synthesis of a Calix[4]arene Derivative for Isolation of a Stable Cation Radical Salt for Use as a Colorimetric Sensor of Nitric Oxide. Journal of the American Chemical Society, 2004, 126, 13582-13583.	6.6	56
128	A Practical One-Pot Synthesis of Soluble Hexa-peri-hexabenzocoronene and Isolation of Its Cation-Radical Salt. Journal of Organic Chemistry, 2003, 68, 4071-4074.	1.7	91
129	Synthesis, Structure, and Evaluation of the Effect of Multiple Stacking on the Electron-Donor Properties of π-Stacked Polyfluorenes. Journal of the American Chemical Society, 2003, 125, 8712-8713.	6.6	144
130	A Remarkably Efficient Synthesis of Purecis-Stilbenoid Hydrocarbons Usingtrans-Dibromoalkenes via Palladium Catalysis. Journal of the American Chemical Society, 2002, 124, 14832-14833.	6.6	35
131	Intramolecular (electron) delocalization between aromatic donors and their tethered cation–radicals. Application of electrochemical and structural probesâ€. Perkin Transactions II RSC, 2001, , 1585-1594.	1.1	35
132	Multiple-Electron Transfer in a Single Step. Design and Synthesis of Highly Charged Cation-Radical Salts. Organic Letters, 2001, 3, 2887-2890.	2.4	112
133	A Redox-Controlled Molecular Switch Based on the Reversible Câ^C Bond Formation in Octamethoxytetraphenylene. Angewandte Chemie - International Edition, 2000, 39, 809-812.	7.2	65
134	Guest Penetration Deep within the Cavity of Calix[4]arene Hosts: The Tight Binding of Nitric Oxide to Distal (Cofacial) Aromatic Groups. Angewandte Chemie - International Edition, 2000, 39, 2123-2127.	7.2	75
135	Structural Characterization of Novel Olefinic Cation Radicals: X-ray Crystallographic Evidence of Ïf–΀ Hyperconjugation. Angewandte Chemie - International Edition, 2000, 39, 3671-3674.	7.2	22
136	Stable Dimeric Aromatic Cationâ ``Radicals. Structural and Spectral Characterization of Through-Space Charge Delocalization. Journal of Organic Chemistry, 2000, 65, 6826-6836.	1.7	148
137	Spontaneous oxidation of organic donors to their cation radicals using BrÃ,nsted acids. Identification of the elusive oxidant â€. Perkin Transactions II RSC, 2000, , 1837-1840.	1.1	26
138	Donor/acceptor organizations and the electron-transfer paradigm for organic reactivity. Advances in Physical Organic Chemistry, 2000, 35, 193-318.	0.5	34
139	Vicinal-diaryl interactions in stilbenoid hydrocarbons as observed in the through-space charge delocalization of their cation radicals. Canadian Journal of Chemistry, 1999, 77, 913-921.	0.6	19
140	Steric Control of Electron Transfer. Changeover from Outer-Sphere to Inner-Sphere Mechanisms in Arene/Quinone Redox Pairs. Journal of the American Chemical Society, 1999, 121, 617-626.	6.6	137
141	An Efficient Venus Flytrap for the Reversible Binding of Nitric Oxide. Angewandte Chemie - International Edition, 1998, 37, 1585-1587.	7.2	37
142	Isolation and X-ray Structure of Chloroarenium Cations as Wheland Intermediates in Electrophilic Aromatic Chlorination. Journal of the American Chemical Society, 1998, 120, 13278-13279.	6.6	46
143	Cofacial Phenylene Donors as Novel Organic Sensors for the Reversible Binding of Nitric Oxide. Journal of Organic Chemistry, 1998, 63, 8630-8631.	1.7	32
144	Acid Catalysis vs. Electron-Transfer Catalysis via Organic Cations or Cation-Radicals as the Reactive Intermediate. Are These Distinctive Mechanisms?. Acta Chemica Scandinavica, 1998, 52, 114-130.	0.7	75

#	Article	IF	CITATIONS
145	α-Nitration of KetonesviaEnol Silyl Ethers. Radical Cations as Reactive Intermediates in Thermal and Photochemical Processes. Journal of Organic Chemistry, 1996, 61, 627-639.	1.7	49
146	Radical-Cation Catalysis in the Synthesis of Diphenylmethanes via the Dealkylative Coupling of Benzylic Ethers. Journal of Organic Chemistry, 1995, 60, 7479-7490.	1.7	40
147	Isolation of Novel Radical Cations from Hydroquinone Ethers. Conformational Transition of the Methoxy Group upon Electron Transfer. Journal of Organic Chemistry, 1995, 60, 4399-4411.	1.7	77
148	Convenient preparation of quinones via the catalytic autoxidation of hydroquinones with nitrogen oxides. Tetrahedron Letters, 1994, 35, 1335-1338.	0.7	32
149	Quantitative assessment of electron-donor properties of enol silyl ethers: Charge-transfer complex formation, photoelectron spectra and transient electrochemical oxidation. Tetrahedron Letters, 1994, 35, 8577-8580.	0.7	20
150	Oxidative dealkylation of hydroquinone ethers with nitrogen dioxide in the convenient preparation of quinones. Journal of the Chemical Society Perkin Transactions II, 1994, , 1157.	0.9	10
151	Facile preparation of α-nitroketones from enol silyl ethers. Tetrahedron Letters, 1993, 34, 1859-1862.	0.7	34
152	An easy preparation of simple sultines and hydroxyalkanesulfinate salts. Tetrahedron Letters, 1989, 30, 2763-2766.	0.7	22
153	Ϊ‰-HYDROXY-1-ALKANESULFONYL CHLORIDES. Phosphorous and Sulfur and the Related Elements, 1987, 31, 161-175.	0.2	12
154	HYDROXYALKANESULFONYL CHLORIDES FROM CHLORINATION OF HYDROXYALKANESULFINATE SALTS IN A NONPOLAR MEDIUM: 3-HYDROXY-1-PROPANESULFONYL AND 4-HYDROXY-1-BUTANESULFONYL CHLORIDES. Phosphorous and Sulfur and the Related Elements, 1987, 33, 165-171.	0.2	10
155	A Convenient Method of Benzylic Oxidation with Pyridinium Chlorochromate. Synthetic Communications, 1986, 16, 1493-1498.	1.1	55
156	Substituent directed oxidative cyclization with cetyltrimethylammonium permanganate: A general approach to the synthesis of Î ³ - and Î ⁻ lactones. Tetrahedron Letters, 1986, 27, 4079-4082.	0.7	19
157	Highly Selective Oxidative Cleavage of Aryl Substituted Olefins with Pyridinium Chlorochromate. Synthetic Communications, 1985, 15, 769-774.	1.1	21
158	A Simple and Mild Method for thecis-Hydroxylation of Alkenes with Cetyltrimethylammonium Permanganate. Synthesis, 1984, 1984, 431-433.	1.2	39
159	Sulfenes. , 0, , 697-766.		14