Ryan Whitford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8264954/publications.pdf

Version: 2024-02-01

27 papers 1,701 citations

471509 17 h-index 26 g-index

28 all docs 28 docs citations

times ranked

28

2266 citing authors

#	Article	IF	CITATIONS
1	CLE Peptides Control <i>Medicago truncatula </i> Nodulation Locally and Systemically Â. Plant Physiology, 2010, 153, 222-237.	4.8	293
2	Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. Journal of Experimental Botany, 2013, 64, 5411-5428.	4.8	239
3	Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18625-18630.	7.1	191
4	GOLVEN Secretory Peptides Regulate Auxin Carrier Turnover during Plant Gravitropic Responses. Developmental Cell, 2012, 22, 678-685.	7.0	182
5	<scp>CRISPR</scp> /Cas9â€mediated knockout of <i>Ms1</i> enables the rapid generation of maleâ€sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 2019, 17, 1905-1913.	8.3	125
6	Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nature Communications, 2017, 8, 869.	12.8	82
7	The <i>Ph2</i> pairing homoeologous locus of wheat (<i>Triticum aestivum</i>): identification of candidate meiotic genes using a comparative genetics approach. Plant Journal, 2003, 36, 443-456.	5.7	73
8	Tetrapyrroleâ€based drought stress signalling. Plant Biotechnology Journal, 2015, 13, 447-459.	8.3	71
9	Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Functional and Integrative Genomics, 2017, 17, 279-292.	3.5	62
10	gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnology, 2019, 19, 71 .	3. 3	55
11	A DNA mismatch repair gene links to the <i>Ph2</i> locus in wheat. Genome, 2002, 45, 116-124.	2.0	50
12	Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination. Nature Communications, 2021, 12, 803.	12.8	49
13	Wheat <i>ms5</i> maleâ€sterility is induced by recessive homoeologous A and D genome nonâ€specific lipid transfer proteins. Plant Journal, 2019, 99, 673-685.	5.7	31
14	Unfertilized ovary pushes wheat flower open for cross-pollination. Journal of Experimental Botany, 2018, 69, 399-412.	4.8	29
15	Uncovering the evolutionary origin of blue anthocyanins in cereal grains. Plant Journal, 2020, 101, 1057-1074.	5.7	29
16	Effects of Rht-B1 and Ppd-D1 loci on pollinator traits in wheat. Theoretical and Applied Genetics, 2019, 132, 1965-1979.	3.6	27
17	Simultaneous high-throughput recombinational cloning of open reading frames in closed and open configurations. Plant Biotechnology Journal, 2006, 4, 317-324.	8.3	18
18	Wheat TaMs1 is a glycosylphosphatidylinositol-anchored lipid transfer protein necessary for pollen development. BMC Plant Biology, 2018, 18, 332.	3.6	17

#	Article	IF	CITATIONS
19	Hybrid breeding in wheat: how shaping floral biology can offer new perspectives. Functional Plant Biology, 2020, 47, 675.	2.1	16
20	HvLEAFY controls the early stages of floral organ specification and inhibits the formation of multiple ovaries in barley. Plant Journal, 2021, 108, 509-527.	5.7	15
21	Genome-wide identification and analysis of non-specific Lipid Transfer Proteins in hexaploid wheat. Scientific Reports, 2018, 8, 17087.	3.3	13
22	WM5: Isolation and characterisation of a gene expressed during early meiosis and shoot meristem development in wheat. Functional Plant Biology, 2005, 32, 249.	2.1	9
23	Identification of transposons, retroelements, and a gene family predominantly expressed in floral tissues in chromosome 3DS of the hexaploid wheat progenitor Aegilops tauschii. Functional and Integrative Genomics, 2006, 7, 37-52.	3.5	9
24	Barley Plants Overexpressing Ferrochelatases (HvFC1 and HvFC2) Show Improved Photosynthetic Rates and Have Reduced Photo-Oxidative Damage under Drought Stress than Non-Transgenic Controls. Agronomy, 2020, 10, 1351.	3.0	7
25	Hybrid Wheat and Abiotic Stress. Sustainable Development and Biodiversity, 2019, , 211-224.	1.7	3
26	Genetic factors associated with favourable pollinator traits in the wheat cultivar Piko. Functional Plant Biology, 2021, 48, 434.	2.1	3
27	Altering Tetrapyrrole Biosynthesis by Overexpressing Ferrochelatases (Fc1 and Fc2) Improves Photosynthetic Efficiency in Transgenic Barley. Agronomy, 2020, 10, 1370.	3.0	0