
Steven C George

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8264680/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A two-compartment model of pulmonary nitric oxide exchange dynamics. Journal of Applied Physiology, 1998, 85, 653-666.	1.2	425
2	Exhaled Nitric Oxide in Pulmonary Diseases. Chest, 2010, 138, 682-692.	0.4	347
3	<i>In Vitro</i> Perfused Human Capillary Networks. Tissue Engineering - Part C: Methods, 2013, 19, 730-737.	1.1	337
4	Noninvasive Assessment of Collagen Gel Microstructure and Mechanics Using Multiphoton Microscopy. Biophysical Journal, 2007, 92, 2212-2222.	0.2	321
5	Diffusion Limits of an in Vitro Thick Prevascularized Tissue. Tissue Engineering, 2005, 11, 257-266.	4.9	314
6	3D microtumors in vitro supported by perfused vascular networks. Scientific Reports, 2016, 6, 31589.	1.6	301
7	Concise Review: Maturation Phases of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells, 2013, 31, 829-837.	1.4	290
8	Prevascularization of a Fibrin-Based Tissue Construct Accelerates the Formation of Functional Anastomosis with Host Vasculature. Tissue Engineering - Part A, 2009, 15, 1363-1371.	1.6	270
9	A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab on A Chip, 2017, 17, 511-520.	3.1	250
10	The Effect of Matrix Density on the Regulation of 3-D Capillary Morphogenesis. Biophysical Journal, 2008, 94, 1930-1941.	0.2	234
11	Modeling pulmonary nitric oxide exchange. Journal of Applied Physiology, 2004, 96, 831-839.	1.2	227
12	Personal and Ambient Air Pollution is Associated with Increased Exhaled Nitric Oxide in Children with Asthma. Environmental Health Perspectives, 2006, 114, 1736-1743.	2.8	209
13	Mesenchymal Stem Cells Enhance Angiogenesis in Mechanically Viable Prevascularized Tissues via Early Matrix Metalloproteinase Upregulation. Tissue Engineering, 2006, 12, 2875-2888.	4.9	204
14	Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab on A Chip, 2016, 16, 282-290.	3.1	197
15	Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab on A Chip, 2018, 18, 3687-3702.	3.1	193
16	Relating small airways to asthma control by using impulse oscillometry in children. Journal of Allergy and Clinical Immunology, 2012, 129, 671-678.	1.5	181
17	Rapid Anastomosis of Endothelial Progenitor Cell–Derived Vessels with Host Vasculature Is Promoted by a High Density of Cotransplanted Fibroblasts. Tissue Engineering - Part A, 2010, 16, 585-594.	1.6	178
18	A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab on A Chip, 2013, 13, 2990.	3.1	175

#	Article	IF	CITATIONS
19	A three-dimensional in vitro model of tumor cell intravasation. Integrative Biology (United Kingdom), 2014, 6, 603.	0.6	172
20	Image Correlation Spectroscopy of Multiphoton Images Correlates with Collagen Mechanical Properties. Biophysical Journal, 2008, 94, 2361-2373.	0.2	168
21	Associations of Primary and Secondary Organic Aerosols With Airway and Systemic Inflammation in an Elderly Panel Cohort. Epidemiology, 2010, 21, 892-902.	1.2	160
22	A simple technique to characterize proximal and peripheral nitric oxide exchange using constant flow exhalations and an axial diffusion model. Journal of Applied Physiology, 2007, 102, 417-425.	1.2	156
23	Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Experimental Cell Research, 2010, 316, 813-825.	1.2	151
24	Peripheral airway impairment measured by oscillometry predicts loss of asthma control in children. Journal of Allergy and Clinical Immunology, 2013, 131, 718-723.	1.5	135
25	Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy. Acta Biomaterialia, 2010, 6, 4657-4665.	4.1	120
26	Full range physiological mass transport control in 3D tissue cultures. Lab on A Chip, 2013, 13, 81-89.	3.1	112
27	Single-exhalation profiles of NO and CO ₂ in humans: effect of dynamically changing flow rate. Journal of Applied Physiology, 1998, 85, 642-652.	1.2	109
28	Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Engineering - Part A, 2016, 22, 1016-1025.	1.6	109
29	ATS Workshop Proceedings: Exhaled Nitric Oxide and Nitric Oxide Oxidative Metabolism in Exhaled Breath Condensate. Proceedings of the American Thoracic Society, 2006, 3, 131-145.	3.5	104
30	Matrix Metalloproteinase Control of Capillary Morphogenesis. Critical Reviews in Eukaryotic Gene Expression, 2008, 18, 251-278.	0.4	104
31	Blood–brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood–central nervous system interface. Experimental Biology and Medicine, 2017, 242, 1669-1678.	1.1	92
32	A single-breath technique with variable flow rate to characterize nitric oxide exchange dynamics in the lungs. Journal of Applied Physiology, 2001, 91, 477-487.	1.2	89
33	Measurement of IL-13–Induced iNOS-Derived Gas Phase Nitric Oxide in Human Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 97-104.	1.4	87
34	Angiogenic sprouting is regulated by endothelial cell expression of Slug (Snai2). Journal of Cell Science, 2014, 127, 2017-28.	1.2	85
35	Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis, 2017, 20, 493-504.	3.7	81
36	Cancer-associated fibroblasts support vascular growth through mechanical force. Scientific Reports, 2017, 7, 12574.	1.6	80

#	Article	IF	CITATIONS
37	In Vivo Control of Soluble Guanylate Cyclase Activation by Nitric Oxide: A Kinetic Analysis. Biophysical Journal, 2001, 80, 2110-2119.	0.2	79
38	Human Induced Pluripotent Stem Cell-Derived Endothelial Cells for Three-Dimensional Microphysiological Systems. Tissue Engineering - Part C: Methods, 2017, 23, 474-484.	1.1	75
39	Epithelial-derived TGF-β2 modulates basal and wound-healing subepithelial matrix homeostasis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L1277-L1285.	1.3	69
40	Airway Epithelium Stimulates Smooth Muscle Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 297-304.	1.4	69
41	Engineering Vascularized Organoid-on-a-Chip Models. Annual Review of Biomedical Engineering, 2021, 23, 141-167.	5.7	67
42	Synergistic Cytokine-Induced Nitric Oxide Production in Human Alveolar Epithelial Cells. Nitric Oxide - Biology and Chemistry, 1999, 3, 348-357.	1.2	65
43	Two-Photon Laser Scanning Microscopy of Epithelial Cell-Modulated Collagen Density in Engineered Human Lung Tissue. Tissue Engineering, 2001, 7, 191-202.	4.9	64
44	Impact of axial diffusion on nitric oxide exchange in the lungs. Journal of Applied Physiology, 2002, 93, 2070-2080.	1.2	62
45	High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human ESC gastruloid cultures. ELife, 2020, 9, .	2.8	62
46	Evaluation of Different Decellularization Protocols on the Generation of Pancreas-Derived Hydrogels. Tissue Engineering - Part C: Methods, 2018, 24, 697-708.	1.1	60
47	Biomaterials to Prevascularize Engineered Tissues. Journal of Cardiovascular Translational Research, 2011, 4, 685-698.	1.1	59
48	Clinical patterns in asthma based on proximal and distal airway nitric oxide categories. Respiratory Research, 2010, 11, 47.	1.4	57
49	Tumor-on-chip modeling of organ-specific cancer and metastasis. Advanced Drug Delivery Reviews, 2021, 175, 113798.	6.6	57
50	Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication. Lab on A Chip, 2015, 15, 3521-3529.	3.1	56
51	Tissue engineering the cardiac microenvironment: Multicellular microphysiological systems for drug screening. Advanced Drug Delivery Reviews, 2016, 96, 225-233.	6.6	56
52	Partitioned exhaled nitric oxide to non-invasively assess asthma. Respiratory Physiology and Neurobiology, 2008, 163, 166-177.	0.7	55
53	Theory and practical recommendations for autocorrelation-based image correlation spectroscopy. Journal of Biomedical Optics, 2012, 17, 080801.	1.4	54
54	BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II. Angiogenesis, 2012, 15, 497-509.	3.7	54

#	Article	IF	CITATIONS
55	An integrated in vitro model of perfused tumor and cardiac tissue. Stem Cell Research and Therapy, 2013, 4, S15.	2.4	54
56	Human Induced Pluripotent Stem-Cardiac-Endothelial-Tumor-on-a-Chip to Assess Anticancer Efficacy and Cardiotoxicity. Tissue Engineering - Part C: Methods, 2020, 26, 44-55.	1.1	54
57	Developing a tissue-engineered model of the human bronchiole. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 619-627.	1.3	52
58	IL-13 induces a bronchial epithelial phenotype that is profibrotic. Respiratory Research, 2008, 9, 27.	1.4	51
59	Tissue Engineering the Vascular Tree. Tissue Engineering - Part B: Reviews, 2017, 23, 505-514.	2.5	49
60	Longitudinal <i>In Vivo</i> Imaging to Assess Blood Flow and Oxygenation in Implantable Engineered Tissues. Tissue Engineering - Part C: Methods, 2012, 18, 697-709.	1.1	46
61	Optical Imaging Predicts Mechanical Properties During Decellularization of Cardiac Tissue. Tissue Engineering - Part C: Methods, 2013, 19, 802-809.	1.1	46
62	Nitric oxide gas phase release in human small airway epithelial cells. Respiratory Research, 2009, 10, 3.	1.4	45
63	A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening. Experimental Biology and Medicine, 2014, 239, 1240-1254.	1.1	45
64	Microfluidic device to attain high spatial and temporal control of oxygen. PLoS ONE, 2018, 13, e0209574.	1.1	43
65	Randomly Distributed K14+ Breast Tumor Cells Polarize to the Leading Edge and Guide Collective Migration in Response to Chemical and Mechanical Environmental Cues. Cancer Research, 2019, 79, 1899-1912.	0.4	43
66	Grand Challenges in Interfacing Engineering With Life Sciences and Medicine. IEEE Transactions on Biomedical Engineering, 2013, 60, 589-598.	2.5	42
67	Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes. Biomedical Optics Express, 2016, 7, 1690.	1.5	41
68	A combined hiPSC-derived endothelial cell and in vitro microfluidic platform for assessing biomaterial-based angiogenesis. Biomaterials, 2019, 194, 73-83.	5.7	41
69	Airway diffusing capacity of nitric oxide and steroid therapy in asthma. Journal of Applied Physiology, 2004, 96, 65-75.	1.2	41
70	Flow-independent Nitric Oxide Exchange Parameters in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 349-357.	2.5	39
71	Modeling trastuzumab-related cardiotoxicity in vitro using human stem cell-derived cardiomyocytes. Toxicology Letters, 2018, 285, 74-80.	0.4	39
72	Implanted Cell-Dense Prevascularized Tissues Develop Functional Vasculature That Supports Reoxygenation After Thrombosis. Tissue Engineering - Part A, 2014, 20, 2316-2328.	1.6	38

#	Article	IF	CITATIONS
73	The Effect of Hypoxia on <i>In Vitro</i> Prevascularization of a Thick Soft Tissue. Tissue Engineering - Part A, 2009, 15, 2423-2434.	1.6	37
74	An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms. Lab on A Chip, 2016, 16, 868-876.	3.1	37
75	Tumor-on-a-chip platform to interrogate the role of macrophages in tumor progression. Integrative Biology (United Kingdom), 2020, 12, 221-232.	0.6	37
76	Organ-on-a-chip model of vascularized human bone marrow niches. Biomaterials, 2022, 280, 121245.	5.7	37
77	Nonsteady State Oxygen Transport in Engineered Tissue: Implications for Design. Tissue Engineering - Part A, 2013, 19, 1433-1442.	1.6	36
78	Modeling bronchial circulation with application to soluble gas exchange: description and sensitivity analysis. Journal of Applied Physiology, 1998, 84, 2070-2088.	1.2	33
79	Mechanisms of Synergistic Cytokine-Induced Nitric Oxide Production in Human Alveolar Epithelial Cells. Nitric Oxide - Biology and Chemistry, 2001, 5, 534-546.	1.2	32
80	Increased Nitric Oxide Concentrations in the Small Airway of Older Normal Subjects. Chest, 2011, 139, 368-375.	0.4	32
81	Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs. Scientific Reports, 2015, 5, 11817.	1.6	32
82	Probing the impact of axial diffusion on nitric oxide exchange dynamics with heliox. Journal of Applied Physiology, 2004, 97, 874-882.	1.2	31
83	Peripheral nitric oxide is increased in rhinitic patients with asthma compared to bronchial hyperresponsiveness. Respiratory Medicine, 2007, 101, 2321-2326.	1.3	30
84	Central and peripheral airway/alveolar sites of exhaled nitric oxide in acute asthma. Thorax, 2010, 65, 619-625.	2.7	29
85	Patient-derived small intestinal myofibroblasts direct perfused, physiologically responsive capillary development in a microfluidic Gut-on-a-Chip Model. Scientific Reports, 2020, 10, 3842.	1.6	29
86	Automated computation of functional vascular density using laser speckle imaging in a rodent window chamber model. Microvascular Research, 2011, 82, 92-95.	1.1	28
87	Supervised Machine Learning for Classification of the Electrophysiological Effects of Chronotropic Drugs on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. PLoS ONE, 2015, 10, e0144572.	1.1	28
88	Flow-independent nitric oxide exchange parameters in healthy adults. Journal of Applied Physiology, 2001, 91, 2173-2181.	1.2	27
89	Microscopic modeling of NO and <i>S</i> -nitrosoglutathione kinetics and transport in human airways. Journal of Applied Physiology, 2001, 90, 777-788.	1.2	27
90	Effect of heterogeneous ventilation and nitric oxide production on exhaled nitric oxide profiles. Journal of Applied Physiology, 2008, 104, 1743-1752.	1.2	27

#	Article	IF	CITATIONS
91	Airway nitric oxide release is reduced after PBS inhalation in asthma. Journal of Applied Physiology, 2007, 102, 1028-1033.	1.2	26
92	A novel three-dimensional model to quantify metastatic melanoma invasion. Molecular Cancer Therapeutics, 2007, 6, 552-561.	1.9	25
93	An elevated bronchodilator response predicts large airway inflammation in mild asthma. Pediatric Pulmonology, 2010, 45, 174-181.	1.0	25
94	Examining axial diffusion of nitric oxide in the lungs using heliox and breath hold. Journal of Applied Physiology, 2006, 100, 623-630.	1.2	24
95	Modeling the concentration of ethanol in the exhaled breath following pretest breathing maneuvers. Annals of Biomedical Engineering, 1995, 23, 48-60.	1.3	23
96	Linking optics and mechanics in an in vivo model of airway fibrosis and epithelial injury. Journal of Biomedical Optics, 2010, 15, 015004.	1.4	23
97	Effect of alveolar volume and sequential filling on the diffusing capacity of the lungs: II. Experiment. Respiration Physiology, 2000, 120, 251-271.	2.8	22
98	Characterizing airway and alveolar nitric oxide exchange during tidal breathing using a three-compartment model. Journal of Applied Physiology, 2004, 96, 1832-1842.	1.2	22
99	Inhaled mannitol shifts exhaled nitric oxide in opposite directions in asthmatics and healthy subjects. Respiration Physiology, 2001, 124, 141-150.	2.8	21
100	Impact of High-Intensity Exercise on Nitric Oxide Exchange in Healthy Adults. Medicine and Science in Sports and Exercise, 2003, 35, 995-1003.	0.2	21
101	A new and more accurate technique to characterize airway nitric oxide using different breath-hold times. Journal of Applied Physiology, 2005, 98, 1869-1877.	1.2	21
102	Review of exhaled nitric oxide in chronic obstructive pulmonary disease. Journal of Breath Research, 2012, 6, 047101.	1.5	21
103	In moderate-to-severe asthma patients monitoring exhaled nitric oxide during exacerbation is not a good predictor of spirometric response to oral corticosteroid. Journal of Allergy and Clinical Immunology, 2012, 129, 1491-1498.	1.5	20
104	A three-dimensional in vitro model of angiogenesis in the airway mucosa. Pulmonary Pharmacology and Therapeutics, 2007, 20, 141-148.	1.1	19
105	Micro-strains in the extracellular matrix induce angiogenesis. Lab on A Chip, 2020, 20, 2776-2787.	3.1	19
106	Exercise-induced bronchoconstriction alters airway nitric oxide exchange in a pattern distinct from spirometry. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1741-R1748.	0.9	18
107	Investigating in vivo airway wall mechanics during tidal breathing with optical coherence tomography. Journal of Biomedical Optics, 2011, 16, 1.	1.4	18
108	Microfluidic Device to Culture 3D In Vitro Human Capillary Networks. Methods in Molecular Biology, 2013, 1202, 21-27.	0.4	18

#	Article	IF	CITATIONS
109	Differential β ₃ Integrin Expression Regulates the Response of Human Lung and Cardiac Fibroblasts to Extracellular Matrix and Its Components. Tissue Engineering - Part A, 2015, 21, 2195-2205.	1.6	18
110	Effect of alveolar volume and sequential filling on the diffusing capacity of the lungs: I. Theory. Respiration Physiology, 2000, 120, 231-249.	2.8	16
111	How accurately should we estimate the anatomical source of exhaled nitric oxide?. Journal of Applied Physiology, 2008, 104, 909-911.	1.2	16
112	TGF-β ₂ reduces nitric oxide synthase mRNA through a ROCK-dependent pathway in airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L361-L367.	1.3	16
113	Local small airway epithelial injury induces global smooth muscle contraction and airway constriction. Journal of Applied Physiology, 2012, 112, 627-637.	1.2	16
114	Vessel network formation in response to intermittent hypoxia is frequency dependent. Journal of Bioscience and Bioengineering, 2015, 120, 347-350.	1.1	16
115	Quantitative design strategies for fine control of oxygen in microfluidic systems. Lab on A Chip, 2020, 20, 3036-3050.	3.1	16
116	Advances in Modeling the Immune Microenvironment of Colorectal Cancer. Frontiers in Immunology, 2020, 11, 614300.	2.2	16
117	Expression of matrix proteins in an in vitro model of airway remodeling in asthma. Allergy and Asthma Proceedings, 2003, 24, 35-42.	1.0	15
118	Theoretical Gas Phase Mass Transfer Coefficients for Endogenous Gases in the Lungs. Annals of Biomedical Engineering, 1999, 27, 326-339.	1.3	14
119	Impact of analysis interval on the multiple exhalation flow technique to partition exhaled nitric oxide. Pediatric Pulmonology, 2010, 45, 182-191.	1.0	14
120	Airway Gas Exchange and Exhaled Biomarkers. , 2011, 1, 1837-1859.		14
121	Bronchial and alveolar components of exhaled nitric oxide and their relationship. European Respiratory Journal, 2012, 39, 1258-1261.	3.1	12
122	Multiscale analysis of collagen microstructure with generalized image correlation spectroscopy and the detection of tissue prestress. Biomaterials, 2013, 34, 6127-6132.	5.7	12
123	Impact of Volume-Dependent Alveolar Diffusing Capacity on Exhaled Nitric Oxide Concentration. Annals of Biomedical Engineering, 2001, 29, 731-739.	1.3	11
124	Free nitric oxide diffusion in the bronchial microcirculation. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2660-H2670.	1.5	11
125	Cut points for Asthma Control Tests in Mexican children in Orange County, California. Annals of Allergy, Asthma and Immunology, 2012, 109, 108-113.	0.5	11
126	Integrating in vitro organ-specific function with the microcirculation. Current Opinion in Chemical Engineering, 2014, 3, 102-111.	3.8	11

#	Article	IF	CITATIONS
127	3D Anastomosed Microvascular Network Model with Living Capillary Networks and Endothelial Cell-Lined Microfluidic Channels. Methods in Molecular Biology, 2017, 1612, 325-344.	0.4	11
128	Quantifying proximal and distal sources of NO in asthma using a multicompartment model. Journal of Applied Physiology, 2010, 108, 821-829.	1.2	10
129	Adenosine A ₁ and Prostaglandin E Receptor 3 Receptors Mediate Global Airway Contraction after Local Epithelial Injury. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 299-305.	1.4	7
130	Detection and monitoring of early airway injury effects of half-mustard (2-chloroethylethylsulfide) exposure using high-resolution optical coherence tomography. Journal of Biomedical Optics, 2009, 14, 044037.	1.4	6
131	Mechanical compression attenuates normal human bronchial epithelial wound healing. Respiratory Research, 2009, 10, 9.	1.4	6
132	Modeling gas phase nitric oxide release in lung epithelial cells. Nitric Oxide - Biology and Chemistry, 2011, 25, 275-281.	1.2	6
133	Dynamic Modeling and Simulation of Nitric Oxide Gas Delivery to Pulmonary Arterioles. Annals of Biomedical Engineering, 2002, 30, 946-960.	1.3	4
134	Mechanical analysis of arterial plaques in native geometry with OCT wall motion analysis. Journal of Biomechanics, 2014, 47, 755-758.	0.9	4
135	Mechanical compression attenuates normal human bronchial epithelial wound healing. Respiratory Research, 2009, 10, 5.	1.4	4
136	Building Better Tumor Models: Organoid Systems to Investigate Angiogenesis. Cancer Drug Discovery and Development, 2018, , 117-148.	0.2	2
137	Correlations between second harmonic signal, microstructure, and mechanics of contracting collagen gels. Proceedings of SPIE, 2008, , .	0.8	1
138	Age-stratified comparison of large and peripheral airway/alveolar nitric oxide levels in children and young adults. Journal of Allergy and Clinical Immunology, 2013, 132, 1222-1224.	1.5	1
139	Ensemble clustering of phosphoproteomic data identifies differences in protein interactions and cell–cell junction integrity of HER2-overexpressing cells. Integrative Biology (United Kingdom), 2017, 9, 539-547.	0.6	1
140	Angiogenic sprouting is regulated by endothelial cell expression of Slug. Development (Cambridge), 2014, 141, e1105-e1105.	1.2	1
141	A computational algorithm to assess the physiochemical determinants of T cell receptor dissociation kinetics. Computational and Structural Biotechnology Journal, 2022, 20, 3473-3481.	1.9	1
142	A molecular dynamics investigation of N-glycosylation effects on T-cell receptor kinetics. Journal of Biomolecular Structure and Dynamics, 2023, 41, 5614-5623.	2.0	1
143	In silico modeling of nitric oxide production, transport and consumption in the lungs. Drug Discovery Today: Disease Models, 2007, 4, 147-153.	1.2	0
144	In silico modeling of respiratory structure, function, and disease. Drug Discovery Today: Disease Models, 2007, 4, 123-124.	1.2	0

#	Article	IF	CITATIONS
145	Mesenchymal Stem Cells Enhance Angiogenesis in Mechanically Viable Prevascularized Tissues via Early Matrix Metalloproteinase Upregulation. Tissue Engineering, 2006, .	4.9	Ο