
Yong-Won Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8264664/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Directly Synthesized Graphene-Based Photonics and Optoelectronics Devices. Applied Sciences (Switzerland), 2021, 11, 2768.	2.5	4
2	Conformal Graphene Directly Synthesized on a Femtosecond Laser-Scribed In-Fiber Microstructure for High-Energy Ultrafast Optical Pulses. ACS Nano, 2021, 15, 20300-20310.	14.6	7
3	Graphene Capacitor-Based Electrical Switching of Mode-Locking in All-Fiberized Femtosecond Lasers. ACS Applied Materials & Interfaces, 2020, 12, 54005-54011.	8.0	14
4	Graphene Self-Phase-Lockers Formed around a Cu Wire Hub for Ring Resonators Incorporated into 57.8 Gigahertz Fiber Pulsed Lasers. ACS Nano, 2020, 14, 15944-15952.	14.6	6
5	Atomic Carbon Spraying: Direct Growth of Graphene on Customized 3D Surfaces of Ultrafast Optical Devices. Advanced Optical Materials, 2020, 8, 1902091.	7.3	6
6	Graphene-dispersed polymer waveguide for efficient formation of mode-locked lasers at extremely low graphene concentration. Carbon, 2020, 166, 123-130.	10.3	10
7	Recent Advances in Blackâ€Phosphorusâ€Based Photonics and Optoelectronics Devices. Small Methods, 2018, 2, 1700315.	8.6	36
8	Ultrafast All-Optical Switching Incorporating <i>in Situ</i> Graphene Grown along an Optical Fiber by the Evanescent Field of a Laser. ACS Photonics, 2018, 5, 445-455.	6.6	28
9	Ultrafast photonic devices based on nanomaterials. , 2018, , .		0
10	Efficient Optical Saturable Absorbers with Graphene on Polymer Waveguides for Femtosecond Laser Pulse Formation. Annalen Der Physik, 2018, 530, 1800249.	2.4	6
11	Graphene-Incorporated Soft Capacitors for Mechanically Adjustable Electro-Optic Modulators. ACS Applied Materials & Interfaces, 2018, 10, 40781-40788.	8.0	9
12	Lithography-free fabrication of field effect transistor channels with randomly contact-printed black phosphorus flakes. Materials Science in Semiconductor Processing, 2018, 86, 58-62.	4.0	2
13	Three-Dimensionally Printed Interconnects for Smart Contact Lenses. ACS Applied Materials & Interfaces, 2018, 10, 28086-28092.	8.0	9
14	Nonlinear Black Phosphorus for Ultrafast Optical Switching. Scientific Reports, 2017, 7, 43371.	3.3	45
15	Air-stable few-layer black phosphorus phototransistor for near-infrared detection. Nanotechnology, 2017, 28, 085201.	2.6	26
16	Oxygenâ€Dependent Synthesis of Graphene on γâ€Alumina Catalyst. Advanced Materials Interfaces, 2017, 4, 1700603.	3.7	6
17	Thermal damage suppression of a black phosphorus saturable absorber for high-power operation of pulsed fiber lasers. Nanotechnology, 2016, 27, 365203.	2.6	29
18	Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform. Advanced Materials, 2016, 28, 1577-1584.	21.0	43

Yong-Won Song

#	Article	IF	CITATIONS
19	Black phosphorus saturable absorber for ultrafast mode″ocked pulse laser via evanescent field interaction. Annalen Der Physik, 2015, 527, 770-776.	2.4	115
20	Growth, Quantitative Growth Analysis and Applications of Graphene on Î ³ -Al2O3 catalysts. Scientific Reports, 2015, 5, 11839.	3.3	24
21	In Situ Synthesis of Graphene with Telecommunication Lasers for Nonlinear Optical Devices. Advanced Optical Materials, 2015, 3, 1264-1272.	7.3	18
22	Hand-manageable graphene sticker for ultrafast mode-locked fiber lasers. Optics Express, 2015, 23, 7940.	3.4	8
23	Nonvolatile Ferroelectric Memory Circuit Using Black Phosphorus Nanosheet-Based Field-Effect Transistors with P(VDF-TrFE) Polymer. ACS Nano, 2015, 9, 10394-10401.	14.6	130
24	Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery. Optics and Lasers in Engineering, 2014, 59, 50-55.	3.8	41
25	Few-Layer Black Phosphorus Field-Effect Transistors with Reduced Current Fluctuation. ACS Nano, 2014, 8, 11753-11762.	14.6	264
26	Catalyst-free growth of readily detachable nanographene on alumina. Journal of Materials Chemistry C, 2013, 1, 6438.	5.5	10
27	Transfer-free synthesis of multilayer graphene using a single-step process in an evaporator and formation confirmation by laser mode-locking. Nanotechnology, 2013, 24, 365603.	2.6	11
28	Q-switched fiber lasers with carbon nanotubes hosted in ceramics. Applied Optics, 2012, 51, 290.	1.8	14
29	Ultrafast optical nonlinearity of multi-layered graphene synthesized by the interface growth process. Nanotechnology, 2012, 23, 225706.	2.6	10
30	Direct Growth and Patterning of Multilayer Graphene onto a Targeted Substrate without an External Carbon Source. ACS Applied Materials & Interfaces, 2012, 4, 3663-3666.	8.0	19
31	A Mode-Locked 1.91 \$mu\$m Fiber Laser Based on Interaction between Graphene Oxide and Evanescent Field. Applied Physics Express, 2012, 5, 112702.	2.4	67
32	Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Applied Physics Letters, 2011, 98, .	3.3	97
33	High-performance laser mode-locker with glass-hosted SWNTs realized by room-temperature aerosol deposition. Optics Express, 2011, 19, 4762.	3.4	16
34	Carbon nanotube-incorporated sol–gel glass for high-speed modulation of intracavity absorption of fiber lasers. Optics Communications, 2010, 283, 3740-3742.	2.1	12
35	Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Applied Physics Letters, 2010, 96, .	3.3	333
36	Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers. Applied Physics Letters, 2010, 97, .	3.3	156

Yong-Won Song

#	Article	IF	CITATIONS
37	Carbon nanotube-doped polymer optical fiber. Optics Letters, 2009, 34, 3077.	3.3	24
38	Fabrication of Carbon nanotube-poly-methyl-methacrylate composites for nonlinear photonic devices. Optics Express, 2008, 16, 11337.	3.4	55
39	Single-walled carbon nanotubes for high-energy optical pulse formation. Applied Physics Letters, 2008, 92, .	3.3	131
40	Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers. Optics Letters, 2007, 32, 148.	3.3	238
41	Passively mode-locked lasers with 172-GHz fundamental-mode repetition rate pulsed by carbon nanotubes. Optics Letters, 2007, 32, 430.	3.3	74
42	Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers. Applied Physics Letters, 2007, 90, 021101.	3.3	91
43	1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes. IEEE Photonics Technology Letters, 2005, 17, 1623-1625.	2.5	60