
## Haibing Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8264477/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bulk crystal growth of hybrid perovskite material CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> .<br>CrystEngComm, 2015, 17, 665-670.                                                                          | 1.3  | 483       |
| 2  | Formation of Hybrid Perovskite Tin Iodide Single Crystals by Top‧eeded Solution Growth. Angewandte<br>Chemie - International Edition, 2016, 55, 3447-3450.                                                        | 7.2  | 238       |
| 3  | Efficient Synthesis of MCu (M = Pd, Pt, and Au) Aerogels with Accelerated Gelation Kinetics and their<br>High Electrocatalytic Activity. Advanced Materials, 2016, 28, 8779-8783.                                 | 11.1 | 213       |
| 4  | Synthesis of Monodisperse Quasi-Spherical Gold Nanoparticles in Water via Silver(I)-Assisted Citrate<br>Reduction. Langmuir, 2010, 26, 3585-3589.                                                                 | 1.6  | 169       |
| 5  | Novel Method for the Preparation of Polymeric Hollow Nanospheres Containing Silver Cores with<br>Different Sizes. Chemistry of Materials, 2005, 17, 3578-3581.                                                    | 3.2  | 152       |
| 6  | Nanovoid Incorporated Ir <sub><i>x</i></sub> Cu Metallic Aerogels for Oxygen Evolution Reaction<br>Catalysis. ACS Energy Letters, 2018, 3, 2038-2044.                                                             | 8.8  | 129       |
| 7  | Rapid Seeded Growth of Monodisperse, Quasi-Spherical, Citrate-Stabilized Gold Nanoparticles via<br>H <sub>2</sub> O <sub>2</sub> Reduction. Langmuir, 2012, 28, 13720-13726.                                      | 1.6  | 114       |
| 8  | Fabrication of Macroscopic Freestanding Films of Metallic Nanoparticle Monolayers by Interfacial<br>Selfâ€Assembly. Advanced Materials, 2008, 20, 4253-4256.                                                      | 11.1 | 108       |
| 9  | Simple Synthesis of Monodisperse, Quasi-spherical, Citrate-Stabilized Silver Nanocrystals in Water.<br>Langmuir, 2013, 29, 5074-5079.                                                                             | 1.6  | 106       |
| 10 | Revitalizing the Frens Method To Synthesize Uniform, Quasi-Spherical Gold Nanoparticles with<br>Deliberately Regulated Sizes from 2 to 330 nm. Langmuir, 2016, 32, 5870-5880.                                     | 1.6  | 93        |
| 11 | Crystallographic Investigations into Properties of Acentric Hybrid Perovskite Single Crystals<br>NH(CH <sub>3</sub> ) <sub>3</sub> SnX <sub>3</sub> (X = Cl, Br). Chemistry of Materials, 2016, 28,<br>6968-6974. | 3.2  | 92        |
| 12 | Facile Fabrication of AgCl@Polypyrroleâ^'Chitosan Coreâ^'Shell Nanoparticles and Polymeric Hollow<br>Nanospheres. Langmuir, 2004, 20, 9909-9912.                                                                  | 1.6  | 85        |
| 13 | Realizing a Record Photothermal Conversion Efficiency of Spiky Gold Nanoparticles in the Second<br>Near-Infrared Window by Structure-Based Rational Design. Chemistry of Materials, 2018, 30, 2709-2718.          | 3.2  | 85        |
| 14 | Intermetallic Pd <sub>3</sub> Pb nanowire networks boost ethanol oxidation and oxygen reduction reactions with significantly improved methanol tolerance. Journal of Materials Chemistry A, 2017, 5, 23952-23959. | 5.2  | 78        |
| 15 | Synthesis of open-mouthed, yolk–shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis. Chemical Science, 2015, 6, 4350-4357.                                                 | 3.7  | 77        |
| 16 | Tumor microenvironment-responsive multifunctional peptide coated ultrasmall gold nanoparticles and their application in cancer radiotherapy. Theranostics, 2020, 10, 5195-5208.                                   | 4.6  | 75        |
| 17 | Facile Fabrication of Water-Soluble Magnetic Nanoparticles and Their Spherical Aggregates.<br>Chemistry of Materials, 2007, 19, 4087-4091.                                                                        | 3.2  | 69        |
| 18 | Top-Seeded Solution Growth, Morphology, and Properties of a Polar Crystal<br>Cs <sub>2</sub> TeMo <sub>3</sub> O <sub>12</sub> . Crystal Growth and Design, 2011, 11, 1863-1868.                                  | 1.4  | 69        |

Haibing Xia

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | PdCuPt Nanocrystals with Multibranches for Enzyme-Free Glucose Detection. ACS Applied Materials<br>& Interfaces, 2016, 8, 22196-22200.                                                                                                                                    | 4.0 | 68        |
| 20 | Low Pt-content ternary PdCuPt nanodendrites: an efficient electrocatalyst for oxygen reduction reaction. Nanoscale, 2017, 9, 1279-1284.                                                                                                                                   | 2.8 | 66        |
| 21 | Synthesis and Characterization of Surface-Functionalized Conducting Polyaniline-Chitosan<br>Nanocomposite. Journal of Nanoscience and Nanotechnology, 2005, 5, 466-473.                                                                                                   | 0.9 | 65        |
| 22 | Controlled chelation between tannic acid and Fe precursors to obtain N, S co-doped carbon with high<br>density Fe-single atom-nanoclusters for highly efficient oxygen reduction reaction in Zn–air<br>batteries. Journal of Materials Chemistry A, 2020, 8, 17136-17149. | 5.2 | 64        |
| 23 | A Facile Method for Synthesizing Dendritic Core–Shell Structured Ternary Metallic Aerogels and<br>Their Enhanced Electrochemical Performances. Chemistry of Materials, 2016, 28, 7928-7934.                                                                               | 3.2 | 60        |
| 24 | Synthesis of core–shell Au–Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles. Journal of Materials Chemistry A, 2015, 3, 368-376.                                                                                 | 5.2 | 59        |
| 25 | Effect and mechanism analysis of MnO2 on permeable reactive barrier (PRB) system for the removal of tetracycline. Chemosphere, 2018, 193, 702-710.                                                                                                                        | 4.2 | 59        |
| 26 | Synthesis of Monodisperse, Quasi-Spherical Silver Nanoparticles with Sizes Defined by the Nature of<br>Silver Precursors. Langmuir, 2014, 30, 2498-2504.                                                                                                                  | 1.6 | 55        |
| 27 | Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions. Nanoscale, 2016, 8, 5076-5081.                                                                                                              | 2.8 | 55        |
| 28 | Size Control Synthesis of Monodisperse, Quasi-Spherical Silver Nanoparticles To Realize<br>Surface-Enhanced Raman Scattering Uniformity and Reproducibility. ACS Applied Materials &<br>Interfaces, 2019, 11, 17637-17646.                                                | 4.0 | 55        |
| 29 | Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range.<br>Journal of Materials Chemistry A, 2018, 6, 8855-8859.                                                                                                                | 5.2 | 54        |
| 30 | Formation of Ordered Arrays of Oriented Polyaniline Nanoparticle Nanorods. Journal of Physical<br>Chemistry B, 2005, 109, 12677-12684.                                                                                                                                    | 1.2 | 53        |
| 31 | Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures<br>with Large Mesopores as Highly Efficient ORR Catalysts. ACS Applied Materials & Interfaces, 2016, 8,<br>35213-35218.                                                 | 4.0 | 53        |
| 32 | Understanding the effect of ultrathin AuPd alloy shells of irregularly shaped Au@AuPd<br>nanoparticles with high-index facets on enhanced performance of ethanol oxidation. Nanoscale, 2015,<br>7, 20105-20116.                                                           | 2.8 | 50        |
| 33 | Sizeâ€Dependent Electrostatic Chain Growth of pHâ€5ensitive Hairy Nanoparticles. Angewandte Chemie -<br>International Edition, 2013, 52, 3726-3730.                                                                                                                       | 7.2 | 49        |
| 34 | Directed self-assembly of gold nanoparticles into plasmonic chains. Soft Matter, 2015, 11, 4562-4571.                                                                                                                                                                     | 1.2 | 49        |
| 35 | High–Yield Production of Uniform Gold Nanoparticles with Sizes from 31 to 577 nm via Oneâ€Pot Seeded<br>Growth and Sizeâ€Đependent SERS Property. Particle and Particle Systems Characterization, 2016, 33,<br>924-932.                                                   | 1.2 | 47        |
| 36 | The impact of size and surface ligand of gold nanorods on liver cancer accumulation and photothermal therapy in the second near-infrared window. Journal of Colloid and Interface Science, 2020, 565, 186-196.                                                            | 5.0 | 47        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | {331}-Faceted trisoctahedral gold nanocrystals: synthesis, superior electrocatalytic performance and highly efficient SERS activity. Nanoscale, 2015, 7, 8405-8415.                                                              | 2.8 | 46        |
| 38 | Correlation of Surface Ag Content in AgPd Shells of Ultrasmall Core–Shell Au@AgPd Nanoparticles<br>with Enhanced Electrocatalytic Performance for Ethanol Oxidation. Journal of Physical Chemistry C,<br>2015, 119, 18434-18443. | 1.5 | 45        |
| 39 | Aggregation-induced emission enhancement of polycyclic aromatic alkaloid derivatives and the crucial role of excited-state proton-transfer. Chemical Communications, 2011, 47, 2907.                                             | 2.2 | 44        |
| 40 | Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances. Journal of Materials Chemistry A, 2017, 5, 19626-19631.                                                          | 5.2 | 44        |
| 41 | Freestanding monolayered nanoporous gold films with high electrocatalytic activity via interfacial self-assembly and overgrowth. Journal of Materials Chemistry A, 2013, 1, 4678.                                                | 5.2 | 42        |
| 42 | High Yield Seedless Synthesis of High-Quality Gold Nanocrystals with Various Shapes. Langmuir, 2014,<br>30, 2480-2489.                                                                                                           | 1.6 | 42        |
| 43 | Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging.<br>Nanoscale, 2016, 8, 11580-11587.                                                                                           | 2.8 | 41        |
| 44 | Hydrogenâ€Bondâ€Selective Phase Transfer of Nanoparticles across Liquid/Gel Interfaces. Angewandte<br>Chemie - International Edition, 2009, 48, 4953-4956.                                                                       | 7.2 | 39        |
| 45 | Water-soluble gold nanoclusters with pH-dependent fluorescence and high colloidal stability over a wide pH range via co-reduction of glutathione and citrate. RSC Advances, 2014, 4, 22651-22659.                                | 1.7 | 38        |
| 46 | Fe–Ni Alloy Nanoclusters Anchored on Carbon Aerogels as Highâ€Efficiency Oxygen Electrocatalysts in<br>Rechargeable Zn–Air Batteries. Small, 2021, 17, e2102002.                                                                 | 5.2 | 38        |
| 47 | Water-Dispersible Spherically Hollow Clusters of Magnetic Nanoparticles. Chemistry of Materials, 2009, 21, 2442-2451.                                                                                                            | 3.2 | 37        |
| 48 | Controlled synthesis of polyaniline nanostructures with junctions using in situ self-assembly of magnetic nanoparticles. Journal of Materials Chemistry, 2005, 15, 4161.                                                         | 6.7 | 36        |
| 49 | Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates.<br>Nanotechnology, 2006, 17, 1661-1667.                                                                                                         | 1.3 | 36        |
| 50 | Simple Synthesis of Au–Pd Alloy Nanowire Networks as Macroscopic, Flexible Electrocatalysts with<br>Excellent Performance. ACS Applied Materials & Interfaces, 2018, 10, 602-613.                                                | 4.0 | 36        |
| 51 | Flux method growth of bulk MoS <sub>2</sub> single crystals and their application as a saturable absorber. CrystEngComm, 2015, 17, 4026-4032.                                                                                    | 1.3 | 35        |
| 52 | Self-assembled oriented conducting polyaniline nanotubes. Nanotechnology, 2004, 15, 1807-1811.                                                                                                                                   | 1.3 | 34        |
| 53 | Template-directed synthesis of nitrogen- and sulfur-codoped carbon nanowire aerogels with<br>enhanced electrocatalytic performance for oxygen reduction. Nano Research, 2017, 10, 1888-1895.                                     | 5.8 | 34        |
| 54 | Synthesis of S-doped AuPbPt alloy nanowire-networks as superior catalysts towards the ORR and HER.<br>Journal of Materials Chemistry A, 2020, 8, 23906-23918.                                                                    | 5.2 | 32        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Modulation of Localized Surface Plasmon Resonance of Nanostructured Gold Crystals by Tuning<br>Their Tip Curvature with Assistance of Iodide and Silver(I) Ions. Journal of Physical Chemistry C, 2011,<br>115, 7887-7895.                                  | 1.5 | 28        |
| 56 | Effect of Latent Heat in Boiling Water on the Synthesis of Gold Nanoparticles of Different Sizes by using the Turkevich Method. ChemPhysChem, 2015, 16, 447-454.                                                                                            | 1.0 | 28        |
| 57 | Formation of Hybrid Perovskite Tin Iodide Single Crystals by Topâ€&eeded Solution Growth. Angewandte<br>Chemie, 2016, 128, 3508-3511.                                                                                                                       | 1.6 | 28        |
| 58 | Simple synthesis and surface facet-tuning of ultrathin alloy-shells of Au@AuPd nanoparticles<br><i>via</i> silver-assisted co-reduction onto facet-controlled Au nanoparticles. Journal of Materials<br>Chemistry A, 2018, 6, 7675-7685.                    | 5.2 | 28        |
| 59 | Fe ultra-small particles anchored on carbon aerogels to enhance the oxygen reduction reaction in<br>Zn-air batteries. Journal of Materials Chemistry A, 2021, 9, 6861-6871.                                                                                 | 5.2 | 28        |
| 60 | Empirical structural design of core@shell Au@Ag nanoparticles for SERS applications. Journal of Materials Chemistry C, 2016, 4, 6649-6656.                                                                                                                  | 2.7 | 27        |
| 61 | Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber. Optics Letters, 2018, 43, 1179.                                                                                                                     | 1.7 | 27        |
| 62 | Regulating Surface Facets of Metallic Aerogel Electrocatalysts by Size-Dependent Localized Ostwald<br>Ripening. ACS Applied Materials & Interfaces, 2018, 10, 23081-23093.                                                                                  | 4.0 | 26        |
| 63 | Radiation preparation of nano-powdered styrene-butadiene rubber (SBR) and its toughening effect for polystyrene and high-impact polystyrene. Radiation Physics and Chemistry, 2007, 76, 1732-1735.                                                          | 1.4 | 25        |
| 64 | Rationalized Fabrication of Structure-Tailored Multishelled Hollow Silica Spheres. Chemistry of Materials, 2019, 31, 7470-7477.                                                                                                                             | 3.2 | 25        |
| 65 | Compressive Strain in Core–Shell Au–Pd Nanoparticles Introduced by Lateral Confinement of<br>Deformation Twinnings to Enhance the Oxidation Reduction Reaction Performance. ACS Applied<br>Materials & Interfaces, 2019, 11, 46902-46911.                   | 4.0 | 25        |
| 66 | Promoting charge transfer in hyperbranched, trisoctahedral-shaped core–shell Au@PdPt<br>nanoparticles by facet-dependent construction of transition layers as high performance<br>electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 18878-18887. | 5.2 | 24        |
| 67 | Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer. Organic Electronics, 2018, 52, 309-316.                                                                                                  | 1.4 | 22        |
| 68 | Fe( <scp>ii</scp> )-Assisted one-pot synthesis of ultra-small core–shell Au–Pt nanoparticles as superior catalysts towards the HER and ORR. Nanoscale, 2020, 12, 20456-20466.                                                                               | 2.8 | 22        |
| 69 | Cyclodextrin-assisted synthesis of water-dispersible polyaniline nanofibers by controlling secondary growth. Materials Chemistry and Physics, 2012, 133, 459-464.                                                                                           | 2.0 | 21        |
| 70 | In situ crystals as templates to fabricate rectangular shaped hollow polyaniline tubes and their application in drug release. Journal of Materials Chemistry, 2011, 21, 2463.                                                                               | 6.7 | 19        |
| 71 | Synthesis of Janus Particles <i>via</i> Strain-Driven Microphase Separation and Their Assembly into Nanoscale Vesicles. ACS Nano, 2014, 8, 11206-11213.                                                                                                     | 7.3 | 19        |
| 72 | Large-Area Monolayer Films of Hexagonal Close-Packed Au@Ag Nanoparticles as Substrates for<br>SERS-Based Quantitative Determination. ACS Applied Materials & Interfaces, 2022, 14, 13480-13489.                                                             | 4.0 | 19        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Crown ether derivative assisted growth of oriented polyaniline nanotubes. Nanotechnology, 2006, 17, 3957-3961.                                                                                                                                                 | 1.3 | 16        |
| 74 | Revitalizing spherical Au@Pd nanoparticles with controlled surface-defect density as high performance electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 6992-7000.                                                                                  | 5.2 | 16        |
| 75 | Realizing enhanced luminescence of silver nanocluster–peptide soft hydrogels by PEI reinforcement.<br>Soft Matter, 2018, 14, 8352-8360.                                                                                                                        | 1.2 | 16        |
| 76 | Facet-Dependent Long-Term Stability of Gold Aerogels toward Ethylene Glycol Oxidation Reaction.<br>ACS Applied Materials & Interfaces, 2020, 12, 39033-39042.                                                                                                  | 4.0 | 15        |
| 77 | Simple synthesis of uniformly small gold nanoparticles for sensitivity enhancement in colorimetric detection of Pb <sup>2+</sup> by improving nanoparticle reactivity and stability. Journal of Materials Chemistry C, 2018, 6, 637-645.                       | 2.7 | 12        |
| 78 | pH-Dependent growth of atomic Pd layers on trisoctahedral gold nanoparticles to realize enhanced performance in electrocatalysis and chemical catalysis. Nanoscale, 2018, 10, 22302-22311.                                                                     | 2.8 | 12        |
| 79 | Two-dimensional Au & Ag hybrid plasmonic nanoparticle network: broadband nonlinear optical response and applications for pulsed laser generation. Nanophotonics, 2020, 9, 2537-2548.                                                                           | 2.9 | 12        |
| 80 | Transition metal ion-assisted synthesis of monodisperse, quasi-spherical gold nanocrystals via citrate reduction. CrystEngComm, 2014, 16, 5268.                                                                                                                | 1.3 | 11        |
| 81 | Fabrication of Au aerogels with {110}-rich facets by size-dependent surface reconstruction for enzyme-free glucose detection. Journal of Materials Chemistry B, 2019, 7, 7588-7598.                                                                            | 2.9 | 10        |
| 82 | Nano-Architecture by Molecular Structure-Directing Agent. Chemistry of Materials, 2008, 20, 2432-2434.                                                                                                                                                         | 3.2 | 9         |
| 83 | Synthesis of large gold nanoparticles with deformation twinnings by one-step seeded growth with<br>Cu( <scp>ii</scp> )-mediated Ostwald ripening for determining nitrile and isonitrile groups. Nanoscale,<br>2020, 12, 16934-16943.                           | 2.8 | 9         |
| 84 | Macroscopical monolayer films of ordered arrays of gold nanoparticles as SERS substrates for <i>in situ</i> quantitative detection in aqueous solutions. Nanoscale, 2021, 13, 14925-14934.                                                                     | 2.8 | 9         |
| 85 | Radiation-induced graft polymerization of maleic acid and maleic anhydride onto ultra-fine powdered styrene–butadiene rubber (UFSBR). Radiation Physics and Chemistry, 2007, 76, 1741-1745.                                                                    | 1.4 | 8         |
| 86 | Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe <sup>2+</sup> -assisted citrate reduction. CrystEngComm, 2016, 18, 7154-7162.                                                                                                      | 1.3 | 7         |
| 87 | S-doped AuPd aerogels as high efficiency catalysts for the oxygen reduction reaction by balancing the<br>ratio between bridging S <sub>2</sub> <sup>2â^'</sup> and apical S <sup>2â^'</sup> ligands. Journal of<br>Materials Chemistry A, 2022, 10, 7800-7810. | 5.2 | 5         |
| 88 | Controlled Synthesis of <1>Y-Junction Polyaniline Nanorods and Nanotubes Using <1>In Situ<br>Self-Assembly of Magnetic Nanoparticles. Journal of Nanoscience and Nanotechnology, 2006, 6,<br>3950-3954.                                                        | 0.9 | 3         |
| 89 | Oriented Gold Nanoparticle-Polyaniline Nanorods with Nanofibers of Controlled Density on Their<br>Surface. Journal of Nanoscience and Nanotechnology, 2010, 10, 2409-2415.                                                                                     | 0.9 | 3         |
| 90 | Synthesis of Uniform Gold Nanorods with Large Width to Realize Ultralow SERS Detection. Chemistry<br>- A European Journal, 2021, 27, 7549-7560.                                                                                                                | 1.7 | 3         |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Realization of the dehydrogenation pathway of formic acid oxidation by ultra-small core–shell Au–Pt<br>nanoparticles with discrete Pt shells. Materials Advances, 2022, 3, 2786-2792. | 2.6 | 3         |
| 92 | A detailed study of growth of nanostructured poly(aniline) particles in the light of thermodynamic interaction balance. Physical Chemistry Chemical Physics, 2010, 12, 11905.         | 1.3 | 2         |
| 93 | Shape transformation of gold nanoparticles in aqueous CTAB/CTAC solution to generate high-index facets for electrocatalysis and SERS activity. ChemPhysMater, 2023, 2, 97-113.        | 1.4 | 2         |
| 94 | Preparation of Porous Hollow Polyaniline Microspheres and Study on Their <i>In Vitro</i><br>Release Behavior. Journal of Nanoscience and Nanotechnology, 2013, 13, 3004-3010.         | 0.9 | 1         |
| 95 | Synthesis of Polyaniline-Coated Carbon Nanotubes and Study on Their pH-Sensitive Conductivity.<br>Journal of Nanoscience and Nanotechnology, 2014, 14, 3087-3094.                     | 0.9 | 0         |
| 96 | High Yield Seedless Synthesis of Uniform Silver Nanoparticles with Different Sizes. Journal of<br>Nanoscience and Nanotechnology, 2016, 16, 5824-5828.                                | 0.9 | 0         |
| 97 | <i>A Special Section on</i> Nanomaterial for Energy, Environment and Biology. Journal of Nanoscience and Nanotechnology, 2016, 16, 5433-5434.                                         | 0.9 | 0         |