Sam Sankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8264467/publications.pdf Version: 2024-02-01

SAM SANKAD

#	Article	IF	CITATIONS
1	Stabilization of ruthenium nanoparticles over NiV-LDH surface for enhanced electrochemical water splitting: an oxygen vacancy approach. Journal of Materials Chemistry A, 2022, 10, 3618-3632.	5.2	61
2	Ruthenium-Doping-Induced Amorphization of VS ₄ Nanostructures with a Rich Sulfur Vacancy for Enhanced Hydrogen Evolution Reaction in a Neutral Electrolyte Medium. Inorganic Chemistry, 2022, 61, 1685-1696.	1.9	15
3	Vanadium-Doped Nickel Cobalt Layered Double Hydroxide: A High-Performance Oxygen Evolution Reaction Electrocatalyst in Alkaline Medium. Inorganic Chemistry, 2022, 61, 4502-4512.	1.9	53
4	Revealing the pH-Universal Electrocatalytic Activity of Co-Doped RuO ₂ toward the Water Oxidation Reaction. ACS Applied Materials & Interfaces, 2022, 14, 1077-1091.	4.0	45
5	Tuning the Electronic Structure of a Ni-Vacancy-Enriched AuNi Spherical Nanoalloy via Electrochemical Etching for Water Oxidation Studies in Alkaline and Neutral Media. Inorganic Chemistry, 2022, 61, 8570-8584.	1.9	4
6	Novel Electrochemical Sensing of Catechins in Raw Green Tea Extract via a Trimetallic Zeolitic Imidazolate Fibrous Framework. ACS Omega, 2022, 7, 19754-19763.	1.6	4
7	Synthesis, fabrication and processing of sulfide, selenide-based materials for water splitting. , 2022, , 407-427.		Ο
8	Constructing electrospun spinel NiFe ₂ O ₄ nanofibers decorated with palladium ions as nanosheets heterostructure: boosting electrocatalytic activity of HER in alkaline water electrolysis. Nanoscale, 2022, 14, 10360-10374.	2.8	15
9	A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: a review. Journal of Materials Chemistry A, 2021, 9, 1314-1352.	5.2	206
10	Green and sustainable route for oxidative depolymerization of lignin: New platform for fine chemicals and fuels. Biotechnology Progress, 2021, 37, e3111.	1.3	22
11	Bi-metallic zeolite imidazole framework nanofibers for the selective determination of Cd ²⁺ ions. Journal of Materials Chemistry B, 2021, 9, 5656-5663.	2.9	5
12	Shape-selective rhodium nano-huddles on DNA for high efficiency hydrogen evolution reaction in acidic medium. Journal of Materials Chemistry C, 2021, 9, 1709-1720.	2.7	15
13	Investigation on nanostructured Cu-based electrocatalysts for improvising water splitting: a review. Inorganic Chemistry Frontiers, 2021, 8, 234-272.	3.0	103
14	Surface Decoration of DNA-Aided Amorphous Cobalt Hydroxide <i>via</i> Ag ⁺ lons as Binder-Free Electrodes toward Electrochemical Oxygen Evolution Reaction. Inorganic Chemistry, 2021, 60, 2680-2693.	1.9	18
15	Highly Stable Trimetallic (Co, Ni, and Fe) Zeolite Imidazolate Framework Microfibers: An Excellent Electrocatalyst for Water Oxidation. Crystal Growth and Design, 2021, 21, 1800-1809.	1.4	25
16	Electrospun Fe-Incorporated ZIF-67 Nanofibers for Effective Electrocatalytic Water Splitting. Inorganic Chemistry, 2021, 60, 4034-4046.	1.9	49
17	Electrospinning as a tool in fabricating hydrated porous cobalt phosphate fibrous network as high rate OER electrocatalysts in alkaline and neutral media. International Journal of Hydrogen Energy, 2021, 46, 10366-10376.	3.8	29
18	Prospects in interfaces of biomolecule DNA and nanomaterials as an effective way for improvising surface enhanced Raman scattering: A review. Advances in Colloid and Interface Science, 2021, 291, 102399.	7.0	5

SAM SANKAR

#	Article	IF	CITATIONS
19	Electrospun Cobalt-Incorporated MOF-5 Microfibers as a Promising Electrocatalyst for OER in Alkaline Media. Inorganic Chemistry, 2021, 60, 9899-9911.	1.9	41
20	Temperature-Controlled Structural Variations of Meticulous Fibrous Networks of NiFe-Polymeric Zeolite Imidazolate Frameworks for Enhanced Performance in Electrocatalytic Water-Splitting Reactions. Inorganic Chemistry, 2021, 60, 12467-12480.	1.9	10
21	Recent Progresses in Engineering of Ni and Co based Phosphides for Effective Electrocatalytic Water Splitting. ChemElectroChem, 2021, 8, 4638-4685.	1.7	39
22	Oxygen vacancy enriched NiMoO ₄ nanorods <i>via</i> microwave heating: a promising highly stable electrocatalyst for total water splitting. Journal of Materials Chemistry A, 2021, 9, 11691-11704.	5.2	65
23	Advancing the extended roles of 3D transition metal based heterostructures with copious active sites for electrocatalytic water splitting. Dalton Transactions, 2021, 50, 13176-13200.	1.6	17
24	Fabrication of highly stable platinum organosols over DNA-scaffolds for enriched catalytic and SERS applications. Dalton Transactions, 2021, 50, 7198-7211.	1.6	4
25	Self-assembled cationic organic nanosheets: role of positional isomers in a guanidinium-core for efficient lithium-ion conduction. Chemical Science, 2021, 12, 13878-13887.	3.7	5
26	Current perspectives on 3D ZIFs incorporated with 1D carbon matrices as fibers <i>via</i> electrospinning processes towards electrocatalytic water splitting: a review. Journal of Materials Chemistry A, 2021, 9, 11961-12002.	5.2	50
27	Enabling and Inducing Oxygen Vacancies in Cobalt Iron Layer Double Hydroxide via Selenization as Precatalysts for Electrocatalytic Hydrogen and Oxygen Evolution Reactions. Inorganic Chemistry, 2021, 60, 2023-2036.	1.9	91
28	Current progressions in transition metal based hydroxides as bi-functional catalysts towards electrocatalytic total water splitting. Sustainable Energy and Fuels, 2021, 5, 6215-6268.	2.5	44
29	Metallic Gold-Incorporated Ni(OH) ₂ for Enhanced Water Oxidation in an Alkaline Medium: A Simple Wet-Chemical Approach. Inorganic Chemistry, 2021, 60, 15818-15829.	1.9	18
30	Enhancement of the OER Kinetics of the Less-Explored α-MnO ₂ <i>via</i> Nickel Doping Approaches in Alkaline Medium. Inorganic Chemistry, 2021, 60, 19429-19439.	1.9	17
31	NiWO ₄ nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors. Journal of Materials Chemistry C, 2020, 8, 3418-3430.	2.7	40
32	Transition-Metal-Based Zeolite Imidazolate Framework Nanofibers via an Electrospinning Approach: A Review. ACS Omega, 2020, 5, 57-67.	1.6	45
33	A Simple Route for the Synthesis of Cobalt Phosphate Nanoparticles for Electrocatalytic Water Oxidation in Alkaline Medium. Energy & Fuels, 2020, 34, 12891-12899.	2.5	23
34	Tuning Cu Overvoltage for a Copper–Telluride System in Electrocatalytic Water Reduction and Feasible Feedstock Conversion: A New Approach. Inorganic Chemistry, 2020, 59, 11129-11141.	1.9	20
35	Intervening Bismuth Tungstate with DNA Chain Assemblies: A Perception toward Feedstock Conversion via Photoelectrocatalytic Water Splitting. Inorganic Chemistry, 2020, 59, 14501-14512.	1.9	7
36	Bimetallic tungstate nanoparticle-decorated-lignin electrodes for flexible supercapacitors. Materials Advances, 2020, 1, 2124-2135.	2.6	25

SAM SANKAR

#	Article	IF	CITATIONS
37	Crystalline Free-Standing Two-Dimensional Zwitterionic Organic Nanosheets for Efficient Conduction of Lithium Ions. ACS Applied Materials & Interfaces, 2020, 12, 58122-58131.	4.0	5
38	Transition metal–based nitrides for energy applications. , 2020, , 493-515.		0
39	Rational Design of Highly Efficient Perovskite Hydroxide for Electrocatalytic Water Oxidation. Inorganic Chemistry, 2020, 59, 4816-4824.	1.9	4
40	Polymeric Nanofibers Containing CoNi-Based Zeolitic Imidazolate Framework Nanoparticles for Electrocatalytic Water Oxidation. ACS Applied Nano Materials, 2020, 3, 4274-4282.	2.4	35
41	Developments in DNA metallization strategies for water splitting electrocatalysis: A review. Advances in Colloid and Interface Science, 2020, 282, 102205.	7.0	23
42	Annexation of Nickel Vanadate (Ni ₃ V ₂ O ₈) Nanocubes on Nanofibers: An Excellent Electrocatalyst for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 4572-4579.	3.2	30
43	Self-assembling of metallic Rh over DNA as nano-chains: An effective organosol for catalysis and SERS studies. Applied Surface Science, 2020, 527, 146777.	3.1	10
44	Detection of Lignin Motifs with RuO ₂ -DNA as an Active Catalyst via Surface-Enhanced Raman Scattering Studies. ACS Sustainable Chemistry and Engineering, 2019, 7, 18463-18475.	3.2	18
45	In Situ Modified Nitrogen-Enriched ZIF-67 Incorporated ZIF-7 Nanofiber: An Unusual Electrocatalyst for Water Oxidation. Inorganic Chemistry, 2019, 58, 13826-13835.	1.9	33
46	Electrospun cobalt-ZIF micro-fibers for efficient water oxidation under unique pH conditions. Catalysis Science and Technology, 2019, 9, 1847-1856.	2.1	43
47	Cobalt tungsten oxide hydroxide hydrate (CTOHH) on DNA scaffold: an excellent bi-functional catalyst for oxygen evolution reaction (OER) and aromatic alcohol oxidation. Dalton Transactions, 2019, 48, 17117-17131.	1.6	25
48	Synthesis of ultra-small Rh nanoparticles congregated over DNA for catalysis and SERS applications. Colloids and Surfaces B: Biointerfaces, 2019, 173, 249-257.	2.5	18
49	Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy and Environmental Science, 2018, 11, 744-771.	15.6	1,055
50	Pt nanoparticle tethered DNA assemblies for enhanced catalysis and SERS applications. New Journal of Chemistry, 2018, 42, 15784-15792.	1.4	21