Georg M Guebitz

List of Publications by Citations

Source: https://exaly.com/author-pdf/8264326/georg-m-guebitz-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

377 papers

14,959 citations

66 h-index

100 g-index

406 ext. papers

16,651 ext. citations

5.4 avg, IF

6.53 L-index

#	Paper	IF	Citations
377	Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 3357-62	4.8	579
376	Exploitation of the tropical oil seed plant Jatropha curcas L <i>Bioresource Technology</i> , 1999 , 67, 73-82	11	440
375	Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. <i>Bioresource Technology</i> , 2008 , 99, 3051-6	11	307
374	CuOflotton nanocomposite: Formation, morphology, and antibacterial activity. <i>Surface and Coatings Technology</i> , 2009 , 204, 54-57	4.4	252
373	Potential applications of laccase-mediated coupling and grafting reactions: a review. <i>Enzyme and Microbial Technology</i> , 2011 , 48, 195-208	3.8	235
372	Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. <i>Water Research</i> , 2002 , 36, 1449-56	12.5	209
371	Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. <i>Macromolecules</i> , 2011 , 44, 4632-4640	5.5	205
370	Formal asymmetric biocatalytic reductive amination. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 9337-40	16.4	194
369	Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. <i>Journal of Biotechnology</i> , 2001 , 89, 131-9	3.7	194
368	Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. <i>Biotechnology Journal</i> , 2013 , 8, 97-109	5.6	189
367	A new alkali-thermostable azoreductase from Bacillus sp. strain SF. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 837-44	4.8	177
366	Enzymes go big: surface hydrolysis and functionalization of synthetic polymers. <i>Trends in Biotechnology</i> , 2008 , 26, 32-8	15.1	162
365	Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. <i>Journal of Biotechnology</i> , 2009 , 143, 207-12	3.7	141
364	Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. <i>Journal of Biotechnology</i> , 2007 , 128, 849-57	3.7	135
363	Antimicrobial and antioxidant properties of chitosan enzymatically functionalized with flavonoids. <i>Process Biochemistry</i> , 2009 , 44, 749-756	4.8	133
362	Stainless steel sponge: a novel carrier for the immobilisation of the white-rot fungus Trametes hirsuta for decolourization of textile dyes. <i>Bioresource Technology</i> , 2004 , 95, 67-72	11	127
361	Bio-preparation of cotton fabrics. <i>Enzyme and Microbial Technology</i> , 2001 , 29, 357-362	3.8	127

(2002-2005)

360	Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta. <i>Chemosphere</i> , 2005 , 58, 417-22	8.4	123	
359	Characterization of a chitinase and an endo-beta-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. <i>Applied Microbiology and Biotechnology</i> , 2001 , 56, 137-43	5.7	119	
358	New substrates for reliable enzymes: enzymatic modification of polymers. <i>Current Opinion in Biotechnology</i> , 2003 , 14, 577-82	11.4	117	
357	Influence of trace elements on methane formation from a synthetic model substrate for maize silage. <i>Bioresource Technology</i> , 2010 , 101, 836-9	11	116	
356	Immobilized laccase for decolourization of Reactive Black 5 dyeing effluent. <i>Biotechnology Letters</i> , 2003 , 25, 1473-7	3	112	
355	Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. <i>Journal of Biotechnology</i> , 2002 , 93, 87-94	3.7	110	
354	Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 3586-92	4.8	109	
353	New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres. Journal of Proteomics, 2006 , 69, 89-99		108	
352	Renewable building blocks for sustainable polyesters: new biotechnological routes for greener plastics. <i>Polymer International</i> , 2016 , 65, 861-871	3.3	107	
351	Application of power ultrasound for azo dye degradation. <i>Ultrasonics Sonochemistry</i> , 2004 , 11, 177-82	8.9	103	
350	Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis. <i>Biomacromolecules</i> , 2013 , 14, 1769-76	6.9	102	
349	Antifouling and Antibacterial Multifunctional Polyzwitterion/Enzyme Coating on Silicone Catheter Material Prepared by Electrostatic Layer-by-Layer Assembly. <i>Langmuir</i> , 2016 , 32, 1347-59	4	101	
348	Enzymatic and chemical hydrolysis of poly(ethylene terephthalate) fabrics. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 6435-6443	2.5	101	
347	A New Esterase from Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET) and Polylactic Acid (PLA). <i>Polymers</i> , 2012 , 4, 617-629	4.5	100	
346	Voltammetric monitoring of laccase-catalysed mediated reactions. <i>Bioelectrochemistry</i> , 2002 , 58, 149-5	6 6 5.6	99	
345	Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. <i>Enzyme and Microbial Technology</i> , 2001 , 28, 815-819	3.8	98	
344	Study of dye decolorization in an immobilized laccase enzyme-reactor using online spectroscopy. <i>Biotechnology and Bioengineering</i> , 2004 , 87, 552-63	4.9	96	
343	Production of laccase by a newly isolated strain of Trametes modesta. <i>Bioresource Technology</i> , 2002 , 84, 259-63	11	96	

342	Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. <i>Biotechnology Progress</i> , 2011 , 27, 951-60	2.8	95
341	An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. <i>Enzyme and Microbial Technology</i> , 2003 , 33, 766-774	3.8	93
340	The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters. <i>Trends in Biotechnology</i> , 2016 , 34, 316-328	15.1	92
339	Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 2-9	2.5	90
338	Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. <i>Journal of Biotechnology</i> , 2006 , 121, 390-401	3.7	89
337	Siloxane removal from biogas by biofiltration: biodegradation studies. <i>Clean Technologies and Environmental Policy</i> , 2008 , 10, 211-218	4.3	86
336	Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 2581-90	4.9	85
335	Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. <i>Water Research</i> , 2011 , 45, 781-7	12.5	85
334	Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. <i>Bioresource Technology</i> , 2010 , 101, 5054-62	11	85
333	Investigations on the laccase-catalyzed polymerization of lignin model compounds using size-exclusion HPLC. <i>Enzyme and Microbial Technology</i> , 2002 , 31, 403-410	3.8	85
332	Stability and decolourization ability of Trametes villosa laccase in liquid ultrasonic fields. <i>Ultrasonics Sonochemistry</i> , 2007 , 14, 355-62	8.9	84
331	CutinaseA new tool for biomodification of synthetic fibers. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 2448-2450	2.5	84
330	Enzymatic hydrolysis of poly(ethylene furanoate). <i>Journal of Biotechnology</i> , 2016 , 235, 47-53	3.7	82
329	Enzymatic Decolorization of Textile Dyeing Effluents. <i>Textile Reseach Journal</i> , 2000 , 70, 409-414	1.7	81
328	Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum. <i>Biocatalysis and Biotransformation</i> , 2007 , 25, 171-177	2.5	79
327	New enzymes with potential for PET surface modification. <i>Biocatalysis and Biotransformation</i> , 2004 , 22, 341-346	2.5	79
326	Esterase and lipase activity in Jatropha curcas L. seeds. <i>Journal of Biotechnology</i> , 1999 , 75, 117-26	3.7	78
325	Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. <i>Carbohydrate Polymers</i> , 2013 , 92, 989-96	10.3	77

(2007-2005)

324	Treatment of wool fibres with subtilisin and subtilisin-PEG. <i>Enzyme and Microbial Technology</i> , 2005 , 36, 917-922	3.8	75
323	Enhancement of biogas production by addition of hemicellulolytic bacteria immobilised on activated zeolite. <i>Water Research</i> , 2010 , 44, 1970-80	12.5	74
322	Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1656-1661	3.8	73
321	Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. <i>Journal of Biotechnology</i> , 2000 , 80, 127-34	3.7	7²
320	Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly(ethylene terephthalate) when expressed as fusion proteins. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 4230-8	4.8	71
319	Predicting dye biodegradation from redox potentials. <i>Biotechnology Progress</i> , 2004 , 20, 1588-92	2.8	71
318	Influence of structure on dye degradation with laccase mediator systems. <i>Biocatalysis and Biotransformation</i> , 2004 , 22, 315-324	2.5	70
317	Laccases to Improve the Whiteness in a Conventional Bleaching of Cotton. <i>Macromolecular Materials and Engineering</i> , 2003 , 288, 807-810	3.9	70
316	Laccase immobilization on enzymatically functionalized polyamide 6,6 fibres. <i>Enzyme and Microbial Technology</i> , 2007 , 41, 867-875	3.8	69
315	Degradation of azo dyes by oxidative processeslaccase and ultrasound treatment. <i>Bioresource Technology</i> , 2008 , 99, 4213-20	11	68
314	Studies of stabilization of native catalase using additives. <i>Enzyme and Microbial Technology</i> , 2002 , 30, 387-391	3.8	68
313	Ultrasound radiation as a "throwing stones" technique for the production of antibacterial nanocomposite textiles. <i>ACS Applied Materials & Amp; Interfaces</i> , 2010 , 2, 1999-2004	9.5	67
312	Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. <i>International Journal of Pharmaceutics</i> , 2012 , 427, 460-6	6.5	66
311	Nitrile hydratase and amidase from Rhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 1634-8	4.8	65
310	Xylan binding subsite mapping in the xylanase from Penicillium simplicissimum using xylooligosaccharides as cryo-protectant. <i>Biochemistry</i> , 1999 , 38, 2403-12	3.2	64
309	Characterization of endoglucanases from the brown rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum. <i>Enzyme and Microbial Technology</i> , 1998 , 23, 133-140	3.8	63
308	Antimicrobial and antioxidant linen via laccase-assisted grafting. <i>Reactive and Functional Polymers</i> , 2011 , 71, 713-720	4.6	62
307	Enzymatic coating of lignocellulosic surfaces with polyphenols. <i>Biotechnology Journal</i> , 2007 , 2, 334-41	5.6	62

306	Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2007 , 1771, 455-61	5	62
305	Enzymatic surface hydrolysis of poly(ethylene furanoate) thin films of various crystallinities. <i>Green Chemistry</i> , 2017 , 19, 5381-5384	10	61
304	Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties. <i>Process Biochemistry</i> , 2010 , 45, 1072-1081	4.8	61
303	Enzymatic hydrolysis of PTT polymers and oligomers. <i>Journal of Biotechnology</i> , 2008 , 135, 45-51	3.7	60
302	A novel metalloprotease from Bacillus cereus for protein fibre processing. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1772-1781	3.8	60
301	Cross-linking of collagen with laccases and tyrosinases. <i>Materials Science and Engineering C</i> , 2011 , 31, 1068-1077	8.3	58
300	Environmentally friendly bleaching of cotton using laccases. <i>Environmental Chemistry Letters</i> , 2005 , 3, 66-69	13.3	58
299	Enzymatic recovery of polyester building blocks from polymer blends. <i>Process Biochemistry</i> , 2017 , 59, 58-64	4.8	57
298	Chitosan hydrogel formation using laccase activated phenolics as cross-linkers. <i>Carbohydrate Polymers</i> , 2017 , 157, 814-822	10.3	57
297	Purification and characterization of a new low molecular weight endoxylanase from Penicillium capsulatum. <i>Enzyme and Microbial Technology</i> , 2003 , 33, 775-785	3.8	57
296	Degradation of azo dyes by laccase and ultrasound treatment. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 2600-7	4.8	56
295	Biotransformation of phenolics with laccase containing bacterial spores. <i>Environmental Chemistry Letters</i> , 2005 , 3, 74-77	13.3	56
294	Enzymatic Degradation of Poly(ethylene 2,5-furanoate) Powders and Amorphous Films. <i>Catalysts</i> , 2017 , 7, 318	4	54
293	Purification and properties of a feruloyl esterase involved in lignocellulose degradation by Aureobasidium pullulans. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5622-6	4.8	54
292	Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents. <i>Journal of Biotechnology</i> , 2001 , 89, 147-53	3.7	54
291	Mannan-degrading enzymes from Sclerotium rolfsii: Characterisation and synergism of two endo Emannanases and a Emannosidase. <i>Bioresource Technology</i> , 1996 , 58, 127-135	11	54
290	Effect of endoglucanases and hemicellulases in magnetic and flotation deinking of xerographic and laser-printed papers. <i>Journal of Biotechnology</i> , 1998 , 65, 209-215	3.7	53
289	Purification and properties of an acidic #mannanase from Sclerotium rolfsii. <i>Journal of Biotechnology</i> , 1996 , 45, 165-172	3.7	53

(2001-2017)

288	Synergistic chemo-enzymatic hydrolysis of poly(ethylene terephthalate) from textile waste. <i>Microbial Biotechnology</i> , 2017 , 10, 1376-1383	6.3	51
287	Towards Sustainable High-Performance Thermoplastics: Synthesis, Characterization, and Enzymatic Hydrolysis of Bisguaiacol-Based Polyesters. <i>ChemSusChem</i> , 2018 , 11, 2529-2539	8.3	51
286	Reactivity of long chain alkylamines to lignin moieties: implications on hydrophobicity of lignocellulose materials. <i>Journal of Biotechnology</i> , 2010 , 149, 81-7	3.7	51
285	Laccase-Mediated Wood Surface Functionalization. <i>Engineering in Life Sciences</i> , 2008 , 8, 297-302	3.4	51
284	Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage. <i>Bioresource Technology</i> , 2011 , 102, 4353-9	11	50
283	Characterization of a poly(butylene adipate-co-terephthalate)- hydrolyzing lipase from Pelosinus fermentans. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 1753-1764	5.7	49
282	Novel peptidoglycan-based diagnostic devices for detection of wound infection. <i>Diagnostic Microbiology and Infectious Disease</i> , 2011 , 71, 12-23	2.9	49
281	Enzymatic grafting of functional molecules to the lignin model dibenzodioxocin and lignocellulose material. <i>Enzyme and Microbial Technology</i> , 2010 , 46, 272-280	3.8	49
2 80	Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity. <i>Bioresource Technology</i> , 2010 , 101, 2793-9	11	49
279	Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1678-1685	3.8	48
278	Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. <i>Biochemistry</i> , 2006 , 45, 7083-91	3.2	48
277	Biogas production fromJatropha curcas press-cake. <i>Applied Biochemistry and Biotechnology</i> , 1997 , 63-65, 457-467	3.2	47
276	Improving enzymatic polyurethane hydrolysis by tuning enzyme sorption. <i>Polymer Degradation and Stability</i> , 2016 , 132, 69-77	4.7	46
275	Enzymatic removal of hemicellulose from dissolving pulps. <i>Biotechnology Letters</i> , 1997 , 19, 491-495	3	46
274	Biological Coloration of Flax Fabrics with Flavonoids using Laccase from Trametes hirsuta. <i>Engineering in Life Sciences</i> , 2008 , 8, 324-330	3.4	46
273	Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes. <i>Biotechnology Journal</i> , 2015 , 10, 1739-49	5.6	45
272	A catalase-peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. <i>Extremophiles</i> , 2001 , 5, 423-9	3	45
271	Ih SitulEnzymatically Prepared Polymers for Wool Coloration. <i>Macromolecular Materials and Engineering</i> , 2001 , 286, 691	3.9	45

270	Hydrolysis of synthetic polyesters by Clostridium botulinum esterases. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 1024-34	4.9	43
269	Biocatalytic single-step alkene cleavage from aryl alkenes: an enzymatic equivalent to reductive ozonization. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 5201-3	16.4	43
268	Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1801-1805	3.8	42
267	Laccase-catalyzed decolorization of the synthetic azo-dye diamond black PV 200 and of some structurally related derivatives. <i>Biocatalysis and Biotransformation</i> , 2004 , 22, 331-339	2.5	42
266	An immobilised catalase peroxidase from the alkalothermophilic Bacillus SF for the treatment of textile-bleaching effluents. <i>Applied Microbiology and Biotechnology</i> , 2002 , 60, 313-9	5.7	42
265	Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility. <i>Environmental Science & Enzyme Active-Site Accessibility</i> . <i>Environmental Science & Enzyme Active-Site Accessibility</i> . <i>Environmental Science & Enzyme Active-Site Accessibility</i> .	10.3	41
264	Analysis of myeloperoxidase activity in wound fluids as a marker of infection. <i>Annals of Clinical Biochemistry</i> , 2013 , 50, 245-54	2.2	41
263	Sensor materials for the detection of human neutrophil elastase and cathepsin G activity in wound fluid. <i>Experimental Dermatology</i> , 2011 , 20, 508-13	4	41
262	Enzyme functionalized electrospun chitosan mats for antimicrobial treatment. <i>Carbohydrate Polymers</i> , 2018 , 181, 551-559	10.3	41
261	Enzymatic Degradation of Aromatic and Aliphatic Polyesters by Expressed Cutinase 1 from. <i>Frontiers in Microbiology</i> , 2017 , 8, 938	5.7	40
260	A novel aryl acylamidase from Nocardia farcinica hydrolyses polyamide. <i>Biotechnology and Bioengineering</i> , 2009 , 102, 1003-11	4.9	40
259	Mode of depolymerisation of hemicellulose by various mannanases and xylanases in relation to their ability to bleach softwood pulp. <i>Applied Microbiology and Biotechnology</i> , 1997 , 47, 658-662	5.7	40
258	The influence of enzymatic treatment on wool fibre properties using PEG-modified proteases. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1705-1711	3.8	40
257	Wax removal for accelerated cotton scouring with alkaline pectinase. <i>Biotechnology Journal</i> , 2007 , 2, 306-15	5.6	40
256	Ultrasound-enhanced enzymatic hydrolysis of poly(ethylene terephthalate). <i>Bioresource Technology</i> , 2016 , 218, 1298-302	11	40
255	Cellulose oxidation and bleaching processes based on recombinant Myriococcum thermophilum cellobiose dehydrogenase. <i>Enzyme and Microbial Technology</i> , 2013 , 52, 60-7	3.8	39
254	Coupling of aromatic amines onto syringylglycerol Equaiacylether using Bacillus SF spore laccase: A model for functionalization of lignin-based materials. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2009 , 61, 143-149		39
253	Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta. <i>Chemosphere</i> , 2006 , 64, 359-70	8.4	39

(2017-2004)

252	Production of Laccase by Trametes hirsuta Grown in an Immersion Bioreactor and its Application in the Docolorization of Dyes from a Leather Factory. <i>Engineering in Life Sciences</i> , 2004 , 4, 233-238	3.4	38
251	Nature Inspired Solutions for Polymers: Will Cutinase Enzymes Make Polyesters and Polyamides Greener?. <i>Catalysts</i> , 2016 , 6, 205	4	38
250	Enzymatic synthesis of lignin derivable pyridine based polyesters for the substitution of petroleum derived plastics. <i>Nature Communications</i> , 2019 , 10, 1762	17.4	37
249	Cytotoxicity of Biochar: A Workplace Safety Concern?. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 362-366	11	37
248	An antioxidant regenerating system for continuous quenching of free radicals in chronic wounds. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2013 , 83, 396-404	5.7	37
247	Coating of immobilised laccase for stability enhancement: A novel approach. <i>Applied Catalysis A: General</i> , 2007 , 329, 156-160	5.1	37
246	Enzymatic polymerization on the surface of functionalized cellulose fibers. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1782-1787	3.8	37
245	Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. <i>Journal of Biotechnology</i> , 2007 , 129, 62-8	3.7	37
244	Influence of Cellulases on Indigo Backstaining. Textile Reseach Journal, 2000, 70, 628-632	1.7	36
243	Laccase mediated oxidation of industrial lignins: Is oxygen limiting?. <i>Process Biochemistry</i> , 2015 , 50, 12	77 ₄ 1828:	B 35
242	Influence of Oxygen and Mediators on Laccase-Catalyzed Polymerization of Lignosulfonate. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 5303-5310	8.3	35
242		8.3	35 35
	Sustainable Chemistry and Engineering, 2016 , 4, 5303-5310 Small cause, large effect: Structural characterization of cutinases from Thermobifida cellulosilytica.		
241	Small cause, large effect: Structural characterization of cutinases from Thermobifida cellulosilytica. Biotechnology and Bioengineering, 2017, 114, 2481-2488 Enzymatic cross-linking of gelatine with laccase and tyrosinase. Biocatalysis and Biotransformation,	4.9	35
241 240	Small cause, large effect: Structural characterization of cutinases from Thermobifida cellulosilytica. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 2481-2488 Enzymatic cross-linking of gelatine with laccase and tyrosinase. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 86-95 Antioxidant activity assay based on laccase-generated radicals. <i>Analytical and Bioanalytical</i>	4.9	35 35
241 240 239	Small cause, large effect: Structural characterization of cutinases from Thermobifida cellulosilytica. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 2481-2488 Enzymatic cross-linking of gelatine with laccase and tyrosinase. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 86-95 Antioxidant activity assay based on laccase-generated radicals. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 393, 679-87 Tyrosinase-catalysed coupling of functional molecules onto protein fibres. <i>Enzyme and Microbial</i>	4.9 2.5	35 35 35
241 240 239 238	Small cause, large effect: Structural characterization of cutinases from Thermobifida cellulosilytica. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 2481-2488 Enzymatic cross-linking of gelatine with laccase and tyrosinase. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 86-95 Antioxidant activity assay based on laccase-generated radicals. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 393, 679-87 Tyrosinase-catalysed coupling of functional molecules onto protein fibres. <i>Enzyme and Microbial Technology</i> , 2008 , 42, 535-542 Two-stage anaerobic fermentation of organic waste in CSTR and UFAF-reactors. <i>Bioresource</i>	4.9 2.5 4.4 3.8	35 35 35 35

234	Preventing microbial colonisation of catheters: antimicrobial and antibiofilm activities of cellobiose dehydrogenase. <i>International Journal of Antimicrobial Agents</i> , 2014 , 44, 402-8	14.3	34
233	Lignin-hemicellulose complexes restrict enzymatic solubilization of mannan and xylan from dissolving pulp. <i>Applied Microbiology and Biotechnology</i> , 1998 , 50, 390-395	5.7	34
232	Laccase kinetics of degradation and coupling reactions. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2005 , 33, 23-28		34
231	Surface engineering of polyester-degrading enzymes to improve efficiency and tune specificity. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 3551-3559	5.7	33
230	Banning toxic heavy-metal catalysts from paints: enzymatic cross-linking of alkyd resins. <i>Green Chemistry</i> , 2013 , 15, 381	10	33
229	Enzyme-catalyzed functionalization of poly(L-lactic acid) for drug delivery applications. <i>Process Biochemistry</i> , 2017 , 59, 77-83	4.8	33
228	Polymerization of guaiacol and a phenolic beta-O-4-substructure by Trametes hirsuta laccase in the presence of ABTS. <i>Biotechnology Progress</i> , 2003 , 19, 1505-9	2.8	33
227	Enlarging the tools for efficient enzymatic polycondensation: structural and catalytic features of cutinase 1 from Thermobifida cellulosilytica. <i>Catalysis Science and Technology</i> , 2016 , 6, 3430-3442	5.5	32
226	Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates. <i>New Biotechnology</i> , 2016 , 33, 295-304	6.4	32
225	Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production. <i>Microbial Cell Factories</i> , 2013 , 12, 38	6.4	32
224	Oxidation of glycerol by 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) in the presence of laccase. <i>Bioresource Technology</i> , 2009 , 100, 4541-5	11	32
223	Chemical modification of proteases for wool cuticle scale removal. <i>Biocatalysis and Biotransformation</i> , 2004 , 22, 299-305	2.5	32
222	Influence of organic solvents on cutinase stability and accessibility to polyamide fibers. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 2749-2753	2.5	32
221	Peptide Anchor for Folate-Targeted Liposomal Delivery. <i>Biomacromolecules</i> , 2015 , 16, 2904-10	6.9	31
220	Incorporation of 2,4,6-trinitrotoluene (TNT) transforming bacteria into explosive formulations. <i>Journal of Hazardous Materials</i> , 2009 , 165, 285-90	12.8	31
219	Enzymatic reduction and oxidation of fibre-bound azo-dyes. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1732-1738	3.8	31
218	Purification and mechanistic characterisation of two polygalacturonases from Sclerotium rolfsii. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1739-1747	3.8	31
217	Using a nitrilase for the surface modification of acrylic fibres. <i>Biotechnology Journal</i> , 2007 , 2, 353-60	5.6	31

216	Dyeing in catalase-treated bleaching baths. <i>Coloration Technology</i> , 2001 , 117, 1-5	2	31
215	Indigo-Cellulase Interactions. <i>Textile Reseach Journal</i> , 2000 , 70, 532-536	1.7	31
214	Biomarkers for infection: enzymes, microbes, and metabolites. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 4595-614	5.7	29
213	Anti-inflammatory and anti-oxidant properties of laccase-synthesized phenolic-O-carboxymethyl chitosan hydrogels. <i>New Biotechnology</i> , 2018 , 40, 236-244	6.4	29
212	Two-step enzymatic functionalisation of polyamide with phenolics. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2012 , 79, 54-60		29
211	Enzymatic synthesis of catechol and hydroxyl-carboxic acid functionalized chitosan microspheres for iron overload therapy. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2011 , 79, 294-303	5.7	28
210	Substrate specificity of Myriococcum thermophilum cellobiose dehydrogenase on mono-, oligo-, and polysaccharides related to in situ production of H2O2. <i>Applied Microbiology and Biotechnology</i> , 2009 , 85, 75-83	5.7	28
209	New enzyme-based process direction to prevent wool shrinking without substantial tensile strength loss. <i>Biotechnology Letters</i> , 2006 , 28, 711-6	3	28
208	Enzymatic removal of off-flavors from apple juice. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 2485-9	5.7	27
207	Enzymatic reduction of azo and indigoid compounds. <i>Applied Microbiology and Biotechnology</i> , 2007 , 77, 321-7	5.7	27
206	Biodegradation of 2,4,6-trinitrotoluene (TNT): An enzymatic perspective. <i>Biocatalysis and Biotransformation</i> , 2005 , 23, 53-69	2.5	27
205	Recycling of textile bleaching effluents for dyeing using immobilized catalase. <i>Biotechnology Letters</i> , 2002 , 24, 173-176	3	27
204	Bioactive albumin functionalized polylactic acid membranes for improved biocompatibility. <i>Reactive and Functional Polymers</i> , 2013 , 73, 1399-1404	4.6	26
203	Enzymatic colouration with laccase and peroxidases: Recent progress. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 125-140	2.5	26
202	Comparison of biogas sludge and raw crop material as source of hydrolytic cultures for anaerobic digestion. <i>Bioresource Technology</i> , 2016 , 207, 244-51	11	25
201	Fully renewable polyesters via polycondensation catalyzed by Thermobifida cellulosilytica cutinase 1: an integrated approach. <i>Green Chemistry</i> , 2017 , 19, 490-502	10	25
200	Extracellular serine proteases from Stenotrophomonas maltophilia: Screening, isolation and heterologous expression in E. coli. <i>Journal of Biotechnology</i> , 2012 , 157, 140-7	3.7	25
199	Characterization of an anaerobic population digesting a model substrate for maize in the presence of trace metals. <i>Chemosphere</i> , 2010 , 80, 829-36	8.4	25

198	Restricting detergent protease action to surface of protein fibres by chemical modification. <i>Applied Microbiology and Biotechnology</i> , 2006 , 72, 738-44	5.7	25
197	Surface modification of polyacrylonitrile with nitrile hydratase and amidase from Agrobacterium tumefaciens. <i>Biocatalysis and Biotransformation</i> , 2006 , 24, 419-425	2.5	25
196	Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm system. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2016 , 104, 1448-56	3.5	25
195	An Esterase from Anaerobic Clostridium hathewayi Can Hydrolyze Aliphatic-Aromatic Polyesters. <i>Environmental Science & Environmental &</i>	10.3	24
194	Enzymes as Green Catalysts and Interactive Biomolecules in Wound Dressing Hydrogels. <i>Trends in Biotechnology</i> , 2018 , 36, 1040-1053	15.1	24
193	Effect of cross-linking method on the activity of spray-dried chitosan microparticles with immobilized laccase. <i>Food and Bioproducts Processing</i> , 2013 , 91, 525-533	4.9	23
192	Tyrosinase-catalysed coating of wool fibres with different protein-based biomaterials. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2009 , 20, 253-69	3.5	23
191	Enzymatic reduction of complex redox dyes using NADH-dependent reductase from Bacillus subtilis coupled with cofactor regeneration. <i>Applied Microbiology and Biotechnology</i> , 2010 , 85, 563-71	5.7	23
190	Superhydrophobic functionalization of cutinase activated poly(lactic acid) surfaces. <i>Green Chemistry</i> , 2017 , 19, 816-822	10	22
189	Size controlled protein nanoemulsions for active targeting of folate receptor positive cells. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 135, 90-98	6	22
188	Antimicrobial Cellobiose Dehydrogenase-Chitosan Particles. <i>ACS Applied Materials & Dehydrogenase</i> , 2016 , 8, 967-73	9.5	22
187	Polyol Structure Influences Enzymatic Hydrolysis of Bio-Based 2,5-Furandicarboxylic Acid (FDCA) Polyesters. <i>Biotechnology Journal</i> , 2017 , 12, 1600741	5.6	22
186	Engineering Strategies for Successful Development of Functional Polymers Using Oxidative Enzymes. <i>Chemical Engineering and Technology</i> , 2012 , 35, 1359-1372	2	22
185	Covalent bonding of protease to different sized enteric polymers and their potential use in wool processing. <i>Enzyme and Microbial Technology</i> , 2010 , 47, 105-111	3.8	22
184	Laccase-induced grafting on plasma-pretreated polypropylene. <i>Biomacromolecules</i> , 2008 , 9, 2735-41	6.9	22
183	Enzymatic surface hydrolysis of PET enhances bonding in PVC coating. <i>Biocatalysis and Biotransformation</i> , 2008 , 26, 365-370	2.5	22
182	Exploring mild enzymatic sustainable routes for the synthesis of bio-degradable aromatic-aliphatic oligoesters. <i>Biotechnology Journal</i> , 2016 , 11, 642-7	5.6	22
181	Hydrolysis of Ionic Phthalic Acid Based Polyesters by Wastewater Microorganisms and Their Enzymes. <i>Environmental Science & Enzymes</i> . 2017, 51, 4596-4605	10.3	21

(2016-2015)

180	Ultrasound coating of polydimethylsiloxanes with antimicrobial enzymes. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 7014-7019	7.3	21
179	Cellobiose dehydrogenase and chitosan-based lysozyme responsive materials for antimicrobial wound treatment. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 416-422	4.9	21
178	Novel protease-based diagnostic devices for detection of wound infection. <i>Wound Repair and Regeneration</i> , 2013 , 21, 482-9	3.6	21
177	Mechanistic insights into laccase-mediated functionalisation of lignocellulose material. <i>Biotechnology and Genetic Engineering Reviews</i> , 2010 , 27, 305-30	4.1	21
176	Laccase-generated tetramethoxy azobismethylene quinone (TMAMQ) as a tool for antioxidant activity measurement. <i>Food Chemistry</i> , 2010 , 118, 437-444	8.5	21
175	Dyeing behaviour of cotton fabric bioscoured with pectate lyase and polygalacturonase. <i>Coloration Technology</i> , 2005 , 121, 291-297	2	21
174	Highly Selective Enzymatic Recovery of Building Blocks from Wool-Cotton-Polyester Textile Waste Blends. <i>Polymers</i> , 2018 , 10,	4.5	21
173	Enzymatic Systems for Cellulose Acetate Degradation. <i>Catalysts</i> , 2017 , 7, 287	4	20
172	Optimization of a biocatalytic single-step alkene cleavage of aryl alkenes. <i>Tetrahedron</i> , 2007 , 63, 3350-	3 3 54	20
171	Polymerization of Various Lignins via Immobilized Myceliophthora thermophila Laccase (MtL). <i>Polymers</i> , 2016 , 8,	4.5	20
170	Activated zeolitesuitable carriers for microorganisms in anaerobic digestion processes?. <i>Applied Microbiology and Biotechnology</i> , 2013 , 97, 3225-38	5.7	19
169	Enzymatic Functionalization of HMLS-Polyethylene Terephthalate Fabrics Improves the Adhesion to Rubber. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 6456-6465	8.3	19
168	Chemo-enzymatic functionalisation of lignocellulose materials using oxiranes. <i>Process Biochemistry</i> , 2010 , 45, 1557-1562	4.8	19
167	Functionalization of cellulose acetate fibers with engineered cutinases. <i>Biotechnology Progress</i> , 2010 , 26, 636-43	2.8	19
166	The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase. <i>Biotechnology Journal</i> , 2006 , 1, 842-9	5.6	19
165	Enzymatic hydrolysis of poly(1,4-butylene 2,5-thiophenedicarboxylate) (PBTF) and poly(1,4-butylene 2,5-furandicarboxylate) (PBF) films: A comparison of mechanisms. <i>Environment International</i> , 2019 , 130, 104852	12.9	18
164	Laccase modified lignosulfonates as novel binder in pigment based paper coating formulations. <i>Reactive and Functional Polymers</i> , 2018 , 123, 20-25	4.6	18
163	Cellobiohydrolases Produce Different Oligosaccharides from Chitosan. <i>Biomacromolecules</i> , 2016 , 17, 2284-92	6.9	18

162	Surface hydrolysis of polyamide with a new polyamidase from Beauveria brongniartii. <i>Biocatalysis and Biotransformation</i> , 2008 , 26, 371-377	2.5	18
161	Enzymatic Degradation of Star Poly(-Caprolactone) with Different Central Units. <i>Polymers</i> , 2018 , 10,	4.5	18
160	Discovery of Polyesterases from Moss-Associated Microorganisms. <i>Applied and Environmental Microbiology</i> , 2017 , 83,	4.8	17
159	An electrochemical sensor for fast detection of wound infection based on myeloperoxidase activity. <i>Sensors and Actuators B: Chemical</i> , 2015 , 209, 265-274	8.5	17
158	Harnessing the Power of Enzymes for Tailoring and Valorizing Lignin. <i>Trends in Biotechnology</i> , 2020 , 38, 1215-1231	15.1	17
157	Enzymatic Recycling of High-Value Phosphor Flame-Retardant Pigment and Glucose from Rayon Fibers. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2386-2394	8.3	17
156	Synthesis of multifunctional bioresponsive polymers for the management of chronic wounds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 882-91	3.5	17
155	Polyester hydrolysis is enhanced by a truncated esterase: Less is more. <i>Biotechnology Journal</i> , 2017 , 12,	5.6	17
154	Identification and Application of Enantiocomplementary Lactamases for Vince Lactam Derivatives. <i>ChemCatChem</i> , 2014 , 6, 2517-2521	5.2	17
153	Staining of wool using the reaction products of ABTS oxidation by laccase: synergetic effects of ultrasound and cyclic voltammetry. <i>Ultrasonics Sonochemistry</i> , 2007 , 14, 363-7	8.9	17
152	Effect of temperature and bath composition on the dyeing of cotton with catalase-treated bleaching effluent. <i>Coloration Technology</i> , 2001 , 117, 166-170	2	17
151	Biotechnological production and high potential of furan-based renewable monomers and polymers. <i>Biotechnology Advances</i> , 2021 , 48, 107707	17.8	17
150	Chitosan based substrates for wound infection detection based on increased lysozyme activity. <i>Carbohydrate Polymers</i> , 2016 , 151, 260-267	10.3	17
149	Signal enhancement in polysaccharide based sensors for infections by incorporation of chemically modified laccase. <i>New Biotechnology</i> , 2012 , 29, 502-9	6.4	16
148	Rapid enzyme analysis as a diagnostic tool for wound infection: Comparison between clinical judgment, microbiological analysis, and enzyme analysis. <i>Wound Repair and Regeneration</i> , 2015 , 23, 345	-32	16
147	Biomimetic Approach to Enhance Enzymatic Hydrolysis of the Synthetic Polyester Poly(1,4-butylene adipate): Fusing Binding Modules to Esterases. <i>Biomacromolecules</i> , 2015 , 16, 3889-96	6.9	16
146	In situ generation of hydrogen peroxide by carbohydrate oxidase and cellobiose dehydrogenase for bleaching purposes. <i>Biotechnology Journal</i> , 2011 , 6, 224-30	5.6	16
145	Enzyme-supported oil extraction fromJatropha curcas Seeds. <i>Applied Biochemistry and Biotechnology</i> , 1997 , 63-65, 449-456	3.2	16

(2019-2006)

144	Detergent formulations for wool domestic washings containing immobilized enzymes. <i>Biotechnology Letters</i> , 2006 , 28, 725-31	3	16
143	Monitoring on-line desalted lignocellulosic hydrolysates by microdialysis sampling micro-high performance anion exchange chromatography with integrated pulsed electrochemical detection/mass spectrometry. <i>Biotechnology and Bioengineering</i> , 2002 , 78, 822-8	4.9	16
142	Indigo Degradation with Laccases from Polyporus sp. and Sclerotium rolfsii. <i>Textile Reseach Journal</i> , 2001 , 71, 420-424	1.7	16
141	Two mannanases from Sclerotium rolfsii in total chlorine free bleaching of softwood kraft pulp. <i>Journal of Biotechnology</i> , 1996 , 50, 181-188	3.7	16
140	Enzymatic production of clickable and PEGylated recombinant polyhydroxyalkanoates. <i>Green Chemistry</i> , 2017 , 19, 5494-5504	10	15
139	Enzymatic synthesis of biobased polyesters utilizing aromatic diols as the rigid component. <i>European Polymer Journal</i> , 2020 , 130, 109680	5.2	15
138	Synergistic effect of mutagenesis and truncation to improve a polyesterase from Clostridium botulinum for polyester hydrolysis. <i>Scientific Reports</i> , 2018 , 8, 3745	4.9	15
137	Laccase Functionalization of Flax and Coconut Fibers. <i>Polymers</i> , 2014 , 6, 1676-1684	4.5	15
136	Voltametric monitoring of enzyme-mediated indigo reduction in the presence of various fibre materials. <i>Enzyme and Microbial Technology</i> , 2009 , 45, 317-323	3.8	15
135	Enzymatic immobilization of 2,4,6-trinitrotoluene (TNT) biodegradation products onto model humic substances. <i>Enzyme and Microbial Technology</i> , 2006 , 39, 1197-1204	3.8	15
134	Structural insights into pH-responsive drug release of self-assembling human serum albumin-silk fibroin nanocapsules. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2018 , 133, 176-187	5.7	15
133	The chemo enzymatic functionalization of chitosan zeolite particles provides antioxidant and antimicrobial properties. <i>Engineering in Life Sciences</i> , 2018 , 18, 334-340	3.4	14
132	Enzymatic synthesis of antibody-human serum albumin conjugate for targeted drug delivery using tyrosinase from Agaricus bisporus. <i>RSC Advances</i> , 2013 , 3, 1460-1467	3.7	14
131	Substrate specificities of glycosidases from Aspergillus species pectinase preparations on elderberry anthocyanins. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 1006-12	5.7	14
130	Enzymatic synthesis of Tinuvin. Enzyme and Microbial Technology, 2007, 40, 1748-1752	3.8	14
129	A new cuticle scale hydrolysing protease from Beauveria brongniartii. <i>Biotechnology Letters</i> , 2006 , 28, 703-10	3	14
128	On the Effect of Microwave Energy on Lipase-Catalyzed Polycondensation Reactions. <i>Molecules</i> , 2016 , 21,	4.8	14
127	Lysozyme-Responsive Spray-Dried Chitosan Particles for Early Detection of Wound Infection. <i>ACS Applied Bio Materials</i> , 2019 , 2, 1331-1339	4.1	14

126	Smart textiles in wound care: functionalization of cotton/PET blends with antimicrobial nanocapsules. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 6592-6603	7.3	14
125	Efficient Physisorption of Candida Antarctica Lipase B on Polypropylene Beads and Application for Polyester Synthesis. <i>Catalysts</i> , 2018 , 8, 369	4	14
124	Immobilization of Myceliophthora thermophila laccase on poly(glycidyl methacrylate) microspheres enhances the degradation of azinphos-methyl. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47417	2.9	13
123	His-Tag Immobilization of Cutinase 1 From Thermobifida cellulosilytica for Solvent-Free Synthesis of Polyesters. <i>Biotechnology Journal</i> , 2017 , 12, 1700322	5.6	13
122	Development of a biodegradable ethylene glycol dinitrate-based explosive. <i>Journal of Hazardous Materials</i> , 2010 , 176, 125-30	12.8	13
121	Polymeric microspheres as support to co-immobilized Agaricus bisporus and Trametes versicolor laccases and their application in diazinon degradation. <i>Arabian Journal of Chemistry</i> , 2020 , 13, 4218-422	7 5·9	13
120	Enzymes as Enhancers for the Biodegradation of Synthetic Polymers in Wastewater. <i>ChemBioChem</i> , 2018 , 19, 317-325	3.8	13
119	Laccase oxidation and removal of toxicants released during combustion processes. <i>Chemosphere</i> , 2016 , 144, 652-60	8.4	12
118	Engineering of the zinc-binding domain of an esterase from Clostridium botulinum towards increased activity on polyesters. <i>Catalysis Science and Technology</i> , 2017 , 7, 1440-1447	5.5	12
117	Lignin-Based Pesticide Delivery System. ACS Omega, 2020 , 5, 4322-4329	3.9	12
116	Laccase catalyzed elimination of morphine from aqueous systems. <i>New Biotechnology</i> , 2018 , 42, 19-25	6.4	12
115	Lysozyme-responsive polymer systems for detection of infection. <i>Engineering in Life Sciences</i> , 2015 , 15, 368-375	3.4	12
114	Hydrolysis of Cutin by PET-Hydrolases. <i>Macromolecular Symposia</i> , 2010 , 296, 342-346	0.8	12
	Trydrotysis of Cutili by FET-frydrotases. Mucromotecutar Symposia, 2010, 290, 342-340	0.0	
113	Enzymatic polymer functionalisation: advances in laccase and peroxidase derived lignocellulose functional polymers. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2011 , 125, 47-68	1.7	12
113	Enzymatic polymer functionalisation: advances in laccase and peroxidase derived lignocellulose		12
	Enzymatic polymer functionalisation: advances in laccase and peroxidase derived lignocellulose functional polymers. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2011 , 125, 47-68	1.7	
112	Enzymatic polymer functionalisation: advances in laccase and peroxidase derived lignocellulose functional polymers. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2011 , 125, 47-68 Cellobiose dehydrogenase-based biomedical applications. <i>Process Biochemistry</i> , 2017 , 59, 37-45 Hydrolytic degradation of ROMP thermosetting materials catalysed by bio-derived acids and	1.7 4.8	11

(2006-2013)

108	HSA nanocapsules functionalized with monoclonal antibodies for targeted drug delivery. <i>International Journal of Pharmaceutics</i> , 2013 , 458, 1-8	6.5	11
107	Enzymatic synthesis of lignin-siloxane hybrid functional polymers. <i>Biotechnology Journal</i> , 2012 , 7, 284-9	92 5.6	11
106	Specificities of a chemically modified laccase from Trametes hirsuta on soluble and cellulose-bound substrates. <i>Biotechnology Letters</i> , 2006 , 28, 741-7	3	11
105	Influence of nitrogen-rich substrates on biogas production and on the methanogenic community under mesophilic and thermophilic conditions. <i>Anaerobe</i> , 2017 , 46, 146-154	2.8	10
104	Laccase Elellobiose dehydrogenase-catalyzed detoxification of phenolic-rich olive processing residues. <i>International Journal of Environmental Science and Technology</i> , 2015 , 12, 1343-1352	3.3	10
103	Bioresponsive systems based on crosslinked polysaccharide hydrogels. <i>Process Biochemistry</i> , 2012 , 47, 305-311	4.8	10
102	Enzymatic hydrolysis of polyester based coatings. <i>Reactive and Functional Polymers</i> , 2013 , 73, 1335-133	9 4.6	10
101	Assessment of infection in chronic wounds based on the activities of elastase, lysozyme and myeloperoxidase. <i>British Journal of Dermatology</i> , 2015 , 173, 1529-31	4	10
100	Bamboo fibre processing: insights into hemicellulase and cellulase substrate accessibility. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 27-37	2.5	10
99	Tailoring elastase inhibition with synthetic peptides. European Journal of Pharmacology, 2011, 666, 53-6	50 5.3	10
98	Bioresponsive systems based on polygalacturonate containing hydrogels. <i>Enzyme and Microbial Technology</i> , 2011 , 48, 312-8	3.8	10
97	Cultivation of heterotrophic algae on enzymatically hydrolyzed municipal food waste. <i>Algal Research</i> , 2020 , 50, 101993	5	10
96	Polyol Structure and Ionic Moieties Influence the Hydrolytic Stability and Enzymatic Hydrolysis of Bio-Based 2,5-Furandicarboxylic Acid (FDCA) Copolyesters. <i>Polymers</i> , 2017 , 9,	4.5	9
95	Wound swab and wound biopsy yield similar culture results. <i>Wound Repair and Regeneration</i> , 2018 , 26, 192-199	3.6	9
94	Technical Lignins and Their Utilization in the Surface Sizing of Paperboard. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 6284-6291	3.9	9
93	pH-responsive materials for optical monitoring of wound status. <i>Sensors and Actuators B: Chemical</i> , 2019 , 301, 126966	8.5	9
92	Protein disulphide isomerase-assisted functionalization of keratin-based matrices. <i>Applied Microbiology and Biotechnology</i> , 2011 , 90, 1311-21	5.7	9
91	Bioscouring of Cotton Fiber with Polygalacturonase Induced in Sclerotium rolfsii using Cellulose and Glucose-pectin. <i>Textile Reseach Journal</i> , 2006 , 76, 400-405	1.7	9

90	A new arylesterase from Pseudomonas pseudoalcaligenes can hydrolyze ionic phthalic polyesters. <i>Journal of Biotechnology</i> , 2017 , 257, 70-77	3.7	8
89	Enzyme-responsive polymers for microbial infection detection. <i>Expert Review of Molecular Diagnostics</i> , 2015 , 15, 1125-31	3.8	8
88	Data on synthesis of oligomeric and polymeric poly(butylene adipate-co-butylene terephthalate) model substrates for the investigation of enzymatic hydrolysis. <i>Data in Brief</i> , 2016 , 7, 291-8	1.2	8
87	Enzymatic hydrolysis of poly(ethyleneterephthalate) used for and analysed by pore modification of track-etched membranes. <i>New Biotechnology</i> , 2017 , 39, 42-50	6.4	8
86	Industrial production of enzyme-modified wool fibers for machine-washable bed coverings. <i>Biotechnology Journal</i> , 2009 , 4, 1441-9	5.6	8
85	Cellular and plasma antioxidant activity assay using tetramethoxy azobismethylene quinone. <i>Free Radical Biology and Medicine</i> , 2010 , 49, 1205-11	7.8	8
84	Internalization of Methotrexate Conjugates by Folate Receptor-⊞ <i>Biochemistry</i> , 2018 , 57, 6780-6786	3.2	8
83	Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2015 , 151, 1-40	1.7	7
82	Polyphenol oxidases exhibit promiscuous proteolytic activity. Communications Chemistry, 2020, 3,	6.3	7
81	Enzymatic Synthesis of 100% Lignin Biobased Granules as Fertilizer Storage and Controlled Slow Release Systems. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 ,	8.3	7
80	Residual transglutaminase in collagen - effects, detection, quantification, and removal. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2012 , 80, 282-8	5.7	7
79	Changes in the bacterial community structure and diversity during bamboo retting. <i>Biotechnology Journal</i> , 2011 , 6, 1262-71	5.6	7
78	Sonochemical substrate selectivity and reaction pathway of systematically substituted azo compounds. <i>Chemosphere</i> , 2007 , 67, 1526-32	8.4	7
77	Thermal Upgrade of Enzymatically Synthesized Aliphatic and Aromatic Oligoesters. <i>Materials</i> , 2020 , 13,	3.5	7
76	Laccase functionalized cellulose acetate for the removal of toxic combustion products. <i>Reactive and Functional Polymers</i> , 2015 , 97, 12-18	4.6	6
75	High Throughput Screening for New Fungal Polyester Hydrolyzing Enzymes. <i>Frontiers in Microbiology</i> , 2020 , 11, 554	5.7	6
74	Microbial Conversion of Crude Glycerol to Dihydroxyacetone. <i>Waste and Biomass Valorization</i> , 2014 , 5, 781-787	3.2	6
73	Efficient production of mannan-degrading enzymes by the basidiomycete Sclerotium rolfsii. <i>Applied Biochemistry and Biotechnology</i> , 1998 , 70-72, 939-53	3.2	6

(2021-2019)

72	Switched reaction specificity in polyesterases towards amide bond hydrolysis by enzyme engineering <i>RSC Advances</i> , 2019 , 9, 36217-36226	3.7	6
71	Stirred-tank and heap-bioleaching of shredder-light-fractions (SLF) by acidophilic bacteria. <i>Hydrometallurgy</i> , 2020 , 193, 105315	4	6
70	Two distinct enzymatic approaches for coupling fatty acids onto lignocellulosic materials. <i>Process Biochemistry</i> , 2017 , 59, 111-115	4.8	5
69	Changing the Molecular Structure of Kraft LigninsDzone Treatment at Alkaline Conditions. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 15163-15172	8.3	5
68	Enzymatic synthesis of highly flexible lignin cross-linked succinyl-chitosan hydrogels reinforced with reed cellulose fibres. <i>European Polymer Journal</i> , 2019 , 120, 109201	5.2	5
67	Enzymatic synthesis and tailoring lignin properties: A systematic study on the effects of plasticizers. <i>Polymer</i> , 2020 , 202, 122725	3.9	5
66	Enhanced methane producing microbial electrolysis cells for wastewater treatment using poly(neutral red) and chitosan modified electrodes. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 4238-4248	5.8	5
65	Shotgun proteomics reveals putative polyesterases in the secretome of the rock-inhabiting fungus Knufia chersonesos. <i>Scientific Reports</i> , 2020 , 10, 9770	4.9	5
64	Commercial cellulases from Trichoderma longibrachiatum enable a large-scale production of chito-oligosaccharides. <i>Pure and Applied Chemistry</i> , 2016 , 88, 865-872	2.1	5
63	Increased Flame Retardancy of Enzymatic Functionalized PET and Nylon Fabrics via DNA Immobilization. <i>Frontiers in Chemistry</i> , 2019 , 7, 685	5	5
62	Enzymatically enriching naringenin with hydroxylated and/or methoxylated phenolic compounds. <i>Process Biochemistry</i> , 2011 , 46, 1019-1024	4.8	5
61	Covalent immobilisation of protease and laccase substrates onto siloxanes. <i>Chemosphere</i> , 2010 , 80, 922	2 -8 .4	5
60	Advances in biotechnology for fibre processing. <i>Biotechnology Letters</i> , 2006 , 28, 679-680	3	5
59	The Synergistic Effects of Endoglucanase and Xylanase in Modifying Douglas Fir Kraft Pulp. <i>ACS Symposium Series</i> , 1998 , 75-87	0.4	5
58	Controlled enzymatic hydrolysis and synthesis of lignin cross-linked chitosan functional hydrogels. <i>International Journal of Biological Macromolecules</i> , 2020 , 161, 1440-1446	7.9	5
57	Together Is Better: The Rumen Microbial Community as Biological Toolbox for Degradation of Synthetic Polyesters. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9,	5.8	5
56	A new bioleaching strategy for the selective recovery of aluminum from multi-layer beverage cans. <i>Waste Management</i> , 2021 , 120, 16-24	8.6	5
55	Leachability of metals from waste incineration residues by iron- and sulfur-oxidizing bacteria. Journal of Environmental Management, 2021 , 280, 111734	7.9	5

54	Microbial production of high value molecules using rayon waste material as carbon-source. <i>New Biotechnology</i> , 2019 , 51, 8-13	6.4	4
53	A robust and simple protocol for the synthesis of arylfluorophosphonates. <i>Tetrahedron Letters</i> , 2015 , 56, 5619-5622	2	4
52	Effects of enzymes on the refining of different pulps. Journal of Biotechnology, 2020, 320, 1-10	3.7	4
51	Glutathione from recovered glucose as ingredient in antioxidant nanocapsules for triggered flavor delivery. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 3958-3969	7:3	4
50	Bioresponsive polymers for the detection of bacterial contaminations in platelet concentrates. <i>New Biotechnology</i> , 2014 , 31, 150-5	6.4	4
49	Structure-function analysis of two closely related cutinases from Thermobifida cellulosilytica. <i>Biotechnology and Bioengineering</i> , 2021 ,	4.9	4
48	Impact of Carbon Felt Electrode Pretreatment on Anodic Biofilm Composition in Microbial Electrolysis Cells. <i>Biosensors</i> , 2021 , 11,	5.9	4
47	Myeloperoxidase-responsive materials for infection detection based on immobilized aminomethoxyphenol. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 2553-2560	4.9	4
46	Tuning of adsorption of enzymes to polymer. <i>Methods in Enzymology</i> , 2021 , 648, 293-315	1.7	4
45	Functionalization Strategies and Fabrication of Solvent-Cast PLLA for Bioresorbable Stents. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 1478	2.6	4
44	Oxidation of Various Kraft Lignins with a Bacterial Laccase Enzyme. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	4
43	A unique two-way approach for the validation of total antioxidant capacity of serum samples. <i>European Journal of Clinical Investigation</i> , 2012 , 42, 432-8	4.6	3
42	Developing SyrinOX total antioxidant capacity assay for measuring antioxidants in humans. <i>International Journal of Experimental Pathology</i> , 2013 , 94, 25-33	2.8	3
41	Phenolic antioxidants and their role in quenching of reactive molecular species in the human skin injury. <i>Lipid Technology</i> , 2015 , 27, 36-39		3
40	Laccase Catalyzed Indigo Carmine Transformation. <i>Journal of Natural Fibers</i> , 2006 , 3, 131-153	1.8	3
39	Polyoxometalates as promoters of laccase-assisted reactions. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2000 , 9, 293-295		3
38	Mechanistic investigation of the effect of endoglucanases related to pulp refining. <i>Cellulose</i> ,	5.5	3
37	A novel environmentally friendly 2,4,6-trinitrotoluene (TNT) based explosive. <i>Macedonian Journal of Chemistry and Chemical Engineering</i> , 2013 , 27, 107	1.1	3

(2019-2020)

36	A Fungal Ascorbate Oxidase with Unexpected Laccase Activity. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	3
35	Biorefining: the role of endoglucanases in refining of cellulose fibers. <i>Cellulose</i> , 2021 , 28, 7633-7650	5.5	3
34	Enzyme Catalyzed Copolymerization of Lignosulfonates for Hydrophobic Coatings. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 697310	5.8	3
33	Biocatalyzed Synthesis of Flavor Esters and Polyesters: A Design of Experiments (DoE) Approach. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	3
32	Environmentally friendly covalent coupling of proteins onto oxidized cellulosic materials. <i>New Journal of Chemistry</i> , 2019 , 43, 14536-14545	3.6	2
31	Fast Blue RR-Siloxane Derivatized Materials Indicate Wound Infection Due to a Deep Blue Color Development. <i>Materials</i> , 2015 , 8, 6633-6639	3.5	2
30	Smart textiles and biomaterials containing enzymes or enzyme substrates 2010 , 56-74		2
29	Hydrolases in Polymer Chemistry: Part III: Synthesis and Limited Surface Hydrolysis of Polyesters and Other Polymers. <i>Advances in Polymer Science</i> , 2010 , 115-126	1.3	2
28	Decolourisation of a synthetic textile effluent using a bacterial consortium. <i>Biotechnology Journal</i> , 2007 , 2, 370-3	5.6	2
27	Biotechnological treatment of textile dye effluent 2007 , 212-231		2
26	Comparison of Carbonic Anhydrases for CO Sequestration <i>International Journal of Molecular Sciences</i> , 2022 , 23,	6.3	2
25	Grafting of Functional Molecules: Insights into Peroxidase-Derived Materials 2010 , 155-177		2
24	Valorisation of slaughter house and deinking paper waste streams for the production of enzyme by Trichoderma reesei. <i>Journal of Cleaner Production</i> , 2020 , 275, 122882	10.3	2
23	Cultivation of heterotrophic algae on paper waste material and digestate. Algal Research, 2021, 54, 102	193	2
22	Chemically modified inulin for intestinal drug delivery - A new dual bioactivity concept for inflammatory bowel disease treatment. <i>Carbohydrate Polymers</i> , 2021 , 252, 117091	10.3	2
21	Comparison of a fungal and a bacterial laccase for lignosulfonate polymerization. <i>Process Biochemistry</i> , 2021 , 109, 207-213	4.8	2
20	Bioprocessing of polyesters 2019 , 37-48		1
19	Surface functionalization of polyester. <i>Methods in Enzymology</i> , 2019 , 627, 339-360	1.7	1

18	Hydroxylation of polypropylene using the monooxygenase mutant 139-3 from Bacillus megaterium BM3. <i>Biocatalysis and Biotransformation</i> , 2012 , 30, 57-62	2.5	1
17	Antagonism of Trichoderma or Gliocladium Species on Two Phytopathogenic Species of Fusarium. Journal of Natural Fibers, 2006 , 3, 1-17	1.8	1
16	Residue-Specific Incorporation of the Non-Canonical Amino Acid Norleucine Improves Lipase Activity on Synthetic Polyesters <i>Frontiers in Bioengineering and Biotechnology</i> , 2022 , 10, 769830	5.8	1
15	Cutinase-Catalyzed Polyester-Polyurethane Degradation: Elucidation of the Hydrolysis Mechanism <i>Polymers</i> , 2022 , 14,	4.5	1
14	Unveiling the Enzymatic Degradation Process of Biobased Thiophene Polyesters. <i>Frontiers in Chemistry</i> , 2021 , 9, 771612	5	1
13	Enzymatic synthesis of wet-resistant lignosulfonate-starch adhesives New Biotechnology, 2022, 69, 49-	5644	1
12	Towards a better understanding of synergistic enzyme effects during refining of cellulose fibers. <i>Carbohydrate Polymer Technologies and Applications</i> , 2022 , 100223	1.7	1
11	Delivery of Biomolecules Using Chitosan Wound Dressings. <i>Advances in Polymer Science</i> , 2021 , 447-467	1.3	O
10	Effect of Binding Modules Fused to Cutinase on the Enzymatic Synthesis of Polyesters. <i>Catalysts</i> , 2022 , 12, 303	4	0
9	Bioleaching and Selective Precipitation for Metal Recovery from Basic Oxygen Furnace Slag. <i>Processes</i> , 2022 , 10, 576	2.9	O
8	Optimized biogenic sulfuric acid production and application in the treatment of waste incineration residues <i>Waste Management</i> , 2022 , 144, 182-190	8.6	0
7	Biosilica-loaded poly(?-caprolactone) nanofibers: a step closer to bioprinted materials with tunable properties. <i>Biotechnology Journal</i> , 2014 , 9, 1231-2	5.6	
6	Green polymer processing with enzymes. New Biotechnology, 2014, 31, S31	6.4	
5	Enzyme responsive polymers. <i>New Biotechnology</i> , 2014 , 31, S2	6.4	
4	Advances in the Application of Oxidative Enzymes in Biopolymer Chemistry and Biomaterial Research. <i>ACS Symposium Series</i> , 2012 , 329-349	0.4	
3	Biocatalysis in Material Science 2012 , 1807-1835		
2	Enzymatic Polymer Modification 2010 , 369-387		
1	Characterisation of enzyme catalysed hydrolysation stage of poly(lactic acid) fibre surface by nanoscale thermal analysis: New mechanistic insight. <i>Materials and Design</i> , 2022 , 110810	8.1	