
Susumu S Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8264278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>EGFR</i> Mutation and Resistance of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine, 2005, 352, 786-792.	27.0	3,715
2	CSF Concentration of the Anaplastic Lymphoma Kinase Inhibitor Crizotinib. Journal of Clinical Oncology, 2011, 29, e443-e445.	1.6	546
3	EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncology, The, 2012, 13, e23-e31.	10.7	505
4	BIM Mediates EGFR Tyrosine Kinase Inhibitor-Induced Apoptosis in Lung Cancers with Oncogenic EGFR Mutations. PLoS Medicine, 2007, 4, e315.	8.4	444
5	Structural, Biochemical, and Clinical Characterization of Epidermal Growth Factor Receptor (EGFR) Exon 20 Insertion Mutations in Lung Cancer. Science Translational Medicine, 2013, 5, 216ra177.	12.4	438
6	Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non–Small-Cell Lung Cancers Dependent on the Epidermal Growth Factor Receptor Pathway. Clinical Lung Cancer, 2009, 10, 281-289.	2.6	394
7	An Alternative Inhibitor Overcomes Resistance Caused by a Mutation of the Epidermal Growth Factor Receptor. Cancer Research, 2005, 65, 7096-7101.	0.9	250
8	Compound EGFR Mutations and Response to EGFR Tyrosine Kinase Inhibitors. Journal of Thoracic Oncology, 2013, 8, 118-122.	1.1	166
9	EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget, 2010, 1, 497-514.	1.8	159
10	Mutations in TP53 , PIK3CA , PTEN and other genes in EGFR mutated lung cancers: Correlation with clinical outcomes. Lung Cancer, 2017, 106, 17-21.	2.0	149
11	Preclinical Rationale for Use of the Clinically Available Multitargeted Tyrosine Kinase Inhibitor Crizotinib in ROS1-Translocated Lung Cancer. Journal of Thoracic Oncology, 2012, 7, 1086-1090.	1.1	148
12	Hsp90 Inhibition Suppresses Mutant EGFR-T790M Signaling and Overcomes Kinase Inhibitor Resistance. Cancer Research, 2008, 68, 5827-5838.	0.9	141
13	<i>In vitro</i> modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant <i>EGFR</i> mutants in non-small-cell lung cancer. Oncotarget, 2015, 6, 38789-38803.	1.8	137
14	Transcriptional Profiling Identifies Cyclin D1 as a Critical Downstream Effector of Mutant Epidermal Growth Factor Receptor Signaling. Cancer Research, 2006, 66, 11389-11398.	0.9	112
15	Correlation between Classic Driver Oncogene Mutations in EGFR , ALK , or ROS1 and 22C3–PD-L1 ≥50% Expression in Lung Adenocarcinoma. Journal of Thoracic Oncology, 2017, 12, 878-883.	1.1	109
16	Calpain-mediated X-linked Inhibitor of Apoptosis Degradation in Neutrophil Apoptosis and Its Impairment in Chronic Neutrophilic Leukemia. Journal of Biological Chemistry, 2002, 277, 33968-33977.	3.4	96
17	Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK rearranged lung cancer. Lung Cancer, 2014, 83, 37-43.	2.0	86
18	β-Catenin Contributes to Lung Tumor Development Induced by EGFR Mutations. Cancer Research, 2014, 74, 5891-5902.	0.9	76

#	Article	IF	CITATIONS
19	Responses to the multitargeted MET/ALK/ROS1 inhibitor crizotinib and co-occurring mutations in lung adenocarcinomas with MET amplification or MET exon 14 skipping mutation. Lung Cancer, 2015, 90, 369-374.	2.0	70
20	EGFR-Mutated Lung Cancers Resistant to Osimertinib through EGFR C797S Respond to First-Generation Reversible EGFR Inhibitors but Eventually Acquire EGFR T790M/C797S in Preclinical Models and Clinical Samples. Journal of Thoracic Oncology, 2019, 14, 1995-2002.	1.1	58
21	EGFR Exon 20 Insertion Mutations Display Sensitivity to Hsp90 Inhibition in Preclinical Models and Lung Adenocarcinomas. Clinical Cancer Research, 2018, 24, 6548-6555.	7.0	49
22	TAS6417/CLN-081 Is a Pan-Mutation–Selective EGFR Tyrosine Kinase Inhibitor with a Broad Spectrum of Preclinical Activity against Clinically Relevant <i>EGFR</i> Mutations. Molecular Cancer Research, 2019, 17, 2233-2243.	3.4	49
23	Oncogenic ECFR Represses the TET1 DNA Demethylase to Induce Silencing of Tumor Suppressors in Cancer Cells. Cell Reports, 2016, 16, 457-471.	6.4	48
24	Apoptosis induced by JAK2 inhibition is mediated by Bim and enhanced by the BH3 mimetic ABT-737 in JAK2 mutant human erythroid cells. Blood, 2010, 115, 2901-2909.	1.4	46
25	Tumor biomarker testing in non-small-cell lung cancer: A decade of change. Lung Cancer, 2018, 116, 90-95.	2.0	46
26	Targeting transcription factors in acute myeloid leukemia. International Journal of Hematology, 2019, 109, 28-34.	1.6	43
27	Whacking a mole-cule: clinical activity and mechanisms of resistance to third generation EGFR inhibitors in EGFR mutated lung cancers with EGFR-T790M. Translational Lung Cancer Research, 2015, 4, 809-15.	2.8	43
28	Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare <i>EGFR</i> mutations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10025-10030.	7.1	41
29	Combination treatment with a PI3K/Akt/mTOR pathway inhibitor overcomes resistance to anti-HER2 therapy in PIK3CA-mutant HER2-positive breast cancer cells. Scientific Reports, 2020, 10, 21762.	3.3	39
30	The CLIP1–LTK fusion is an oncogenic driverÂin nonâ€small ell lung cancer. Nature, 2021, 600, 319-323.	27.8	37
31	Pulse Afatinib for ERBB2 Exon 20 Insertion–Mutated Lung Adenocarcinomas. Journal of Thoracic Oncology, 2016, 11, 918-923.	1.1	31
32	Single-Cell Analyses Reveal Diverse Mechanisms of Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer. Cancer Research, 2021, 81, 4835-4848.	0.9	31
33	Effects of gefitinib treatment on cellular uptake of extracellular vesicles in EGFR-mutant non-small cell lung cancer cells. International Journal of Pharmaceutics, 2019, 572, 118762.	5.2	30
34	Long-read sequencing for non-small-cell lung cancer genomes. Genome Research, 2020, 30, 1243-1257.	5.5	28
35	EGFR-A763_Y764insFQEA Is a Unique Exon 20 Insertion Mutation That Displays Sensitivity to Approved and In-Development Lung Cancer EGFR Tyrosine Kinase Inhibitors. JTO Clinical and Research Reports, 2020, 1, 100051.	1.1	26
36	Prognostic significance of β-catenin expression in patients with non-small cell lung cancer: a meta-analysis. Translational Lung Cancer Research, 2017, 6, 97-108.	2.8	22

Susumu S Kobayashi

#	Article	IF	CITATIONS
37	ZNF143 protein is an important regulator of the myeloid transcription factor C/EBPα. Journal of Biological Chemistry, 2017, 292, 18924-18936.	3.4	20
38	Myeloid lncRNA <i>LOUP</i> mediates opposing regulatory effects of RUNX1 and RUNX1-ETO in t(8;21) AML. Blood, 2021, 138, 1331-1344.	1.4	19
39	De novo ALK kinase domain mutations are uncommon in kinase inhibitor-naÃ⁻ve ALK rearranged lung cancers. Lung Cancer, 2016, 99, 17-22.	2.0	16
40	Cases of ALK-Rearranged Lung Cancer with 5-Year Progression-Free Survival with Crizotinib as Initial Precision Therapy. Journal of Thoracic Oncology, 2017, 12, e175-e177.	1.1	15
41	Clinical Benefit of Tyrosine Kinase Inhibitors in Advanced Lung Cancer with <i>EGFR</i> -G719A and Other Uncommon <i>EGFR</i> Mutations. Oncologist, 2021, 26, 281-287.	3.7	15
42	A Cell-Based High-Throughput Screening for Inducers of Myeloid Differentiation. Journal of Biomolecular Screening, 2015, 20, 1150-1159.	2.6	14
43	<scp>HSP90</scp> inhibition overcomes <scp> <i>EGFR</i> </scp> amplificationâ€induced resistance to thirdâ€generation <scp>EGFRâ€TKIs</scp> . Thoracic Cancer, 2021, 12, 631-642.	1.9	14
44	Preclinical Characterization of Mobocertinib Highlights the Putative Therapeutic Window of This Novel EGFR Inhibitor to EGFR Exon 20 Insertion Mutations. JTO Clinical and Research Reports, 2021, 2, 100105.	1.1	13
45	Upregulation of FGF9 in Lung Adenocarcinoma Transdifferentiation to Small Cell Lung Cancer. Cancer Research, 2021, 81, 3916-3929.	0.9	13
46	NAD Modulates DNA Methylation and Cell Differentiation. Cells, 2021, 10, 2986.	4.1	12
47	Acquired Resistance to Osimertinib Plus Savolitinib Is Mediated by MET-D1228 and MET-Y1230 Mutations in EGFR-Mutated MET-Amplified Lung Cancer. JTO Clinical and Research Reports, 2020, 1, 100071.	1.1	11
48	Detection of Crizotinib-Sensitive Lung Adenocarcinomas With MET, ALK, and ROS1 Genomic Alterations via Comprehensive Genomic Profiling. Clinical Lung Cancer, 2015, 16, e105-e109.	2.6	10
49	Activity of Brigatinib in the Setting of AlectinibÂResistance Mediated by ALK I1171S inÂALK-Rearranged Lung Cancer. Journal of Thoracic Oncology, 2019, 14, e1-e3.	1.1	8
50	EGFR-D770>GY and Other Rare EGFR Exon 20 Insertion Mutations with a G770 Equivalence Are Sensitive to Dacomitinib or Afatinib and Responsive to EGFR Exon 20 Insertion Mutant-Active Inhibitors in Preclinical Models and Clinical Scenarios. Cells, 2021, 10, 3561.	4.1	7
51	Styryl Quinazolinones as Potential Inducers of Myeloid Differentiation via Upregulation of C/EBPα. Molecules, 2018, 23, 1938.	3.8	6
52	CCAAT/Enhancer Binding Protein β Is Dispensable for Development of Lung Adenocarcinoma. PLoS ONE, 2015, 10, e0120647.	2.5	6
53	Gefitinib Enhances Mitochondrial Biological Functions in NSCLCs with EGFR Mutations at a High Cell Density. Anticancer Research, 2017, 37, 4779-4788.	1.1	5
54	Alternative splicing of APOBEC3D generates functional diversity and its role as a DNA mutator. International Journal of Hematology, 2020, 112, 395-408.	1.6	4

Susumu S Kobayashi

#	Article	IF	CITATIONS
55	Styryl quinazolinones and its ethynyl derivatives induce myeloid differentiation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2286-2289.	2.2	2
56	Abstract 1030: CENP-E inhibition generates micronucleus formation activating the cGAS-STING pathway in cancer cells. , 2021, , .		2
57	Suppression of multiple antiâ€apoptotic BCL2 family proteins recapitulates the effects of JAK2 inhibitors in JAK2V617F driven myeloproliferative neoplasms. Cancer Science, 2021, , .	3.9	1
58	The Pharmacogenetic Rescue of Side-Lined Anticancer Drugs to the Front-Line: Gefitinib as a Case Example. Annals of Pharmacotherapy, 2011, 45, 263-275.	1.9	0
59	Differential Pattern of Resistance and Sensitivity to Different Classes of MET Inhibitors for MET-Amplified Tumors With MET-D1228X or MET-Y1230X Mutations. JTO Clinical and Research Reports, 2021, 2, 100133.	1.1	0
60	Complete Absence of the Lineage-Determining Transcription Factor C/EBPα Results in Loss of Myeloid Identity in Bcr/abl Induced Malignancy Blood, 2005, 106, 646-646.	1.4	0
61	A Distal Single Nucleotide Polymorphism Disrupts Development-Dependent Long-Range Transcriptional Regulation of the PU.1 Gene through the Chromatin-Remodeling Protein SATB1 in Acute Myeloid Leukemia Blood, 2007, 110, 3175-3175.	1.4	0
62	Abstract 5635: Combined MEK and mitophagy inhibition promotes mtDNA-mediated innate immunity in <i>KRAS</i> -mutant cancer. Cancer Research, 2022, 82, 5635-5635.	0.9	0