Stefanie Ranf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8264227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remodeling of Lipid A in Pseudomonas syringae pv. phaseolicola In Vitro. International Journal of Molecular Sciences, 2022, 23, 1996.	4.1	4
2	The Arabidopsis leucineâ€rich repeat receptorâ€like kinase MIK2 is a crucial component of early immune responses to a fungalâ€derived elicitor. New Phytologist, 2021, 229, 3453-3466.	7.3	38
3	Analysis of the Structure and Biosynthesis of the Lipopolysaccharide Core Oligosaccharide of Pseudomonas syringae pv. tomato DC3000. International Journal of Molecular Sciences, 2021, 22, 3250.	4.1	4
4	Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate <i>Arabidopsis</i> innate immunity through two independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
5	A mutation in Asparagine‣inked Glycosylation 12 (ALG12) leads to receptor misglycosylation and attenuated responses to multiple microbial elicitors. FEBS Letters, 2020, 594, 2440-2451.	2.8	4
6	The multifaceted functions of lipopolysaccharide in plant-bacteria interactions. Biochimie, 2019, 159, 93-98.	2.6	35
7	Loss of <i>wbpL</i> disrupts <i>O</i> â€polysaccharide synthesis and impairs virulence of plantâ€associated <i>Pseudomonas</i> strains. Molecular Plant Pathology, 2019, 20, 1535-1549.	4.2	12
8	Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in <i>Arabidopsis</i> plants. Science, 2019, 364, 178-181.	12.6	145
9	Pattern Recognition Receptors—Versatile Genetic Tools for Engineering Broad-Spectrum Disease Resistance in Crops. Agronomy, 2018, 8, 134.	3.0	26
10	Sensing of molecular patterns through cell surface immune receptors. Current Opinion in Plant Biology, 2017, 38, 68-77.	7.1	105
11	The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2017, 144, 2259-2269.	2.5	39
12	Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus. Journal of Experimental Botany, 2016, 67, 3263-3275.	4.8	47
13	Immune Sensing of Lipopolysaccharide in Plants and Animals: Same but Different. PLoS Pathogens, 2016, 12, e1005596.	4.7	69
14	Challenges in the identification of microbeâ€associated molecular patterns in plant and animal innate immunity: a case study with bacterial lipopolysaccharide. Molecular Plant Pathology, 2016, 17, 1165-1169.	4.2	14
15	Altered glycosylation of exported proteins, including surface immune receptors, compromises calcium and downstream signaling responses to microbe-associated molecular patterns in Arabidopsis thaliana. BMC Plant Biology, 2016, 16, 31.	3.6	16
16	Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca2+ Transients in Plants. Methods in Molecular Biology, 2016, 1398, 331-344.	0.9	3
17	A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nature Immunology, 2015, 16, 426-433.	14.5	286
18	Microbe-associated molecular pattern-induced calcium signaling requires the receptor-like cytoplasmic kinases, PBL1 and BIK1. BMC Plant Biology, 2014, 14, 374.	3.6	100

STEFANIE RANF

#	Article	IF	CITATIONS
19	Ca ²⁺ signalling in plant immune response: from pattern recognition receptors to Ca ²⁺ decoding mechanisms. New Phytologist, 2014, 204, 782-790.	7.3	148
20	Defense-Related Calcium Signaling Mutants Uncovered via a Quantitative High-Throughput Screen in Arabidopsis thaliana. Molecular Plant, 2012, 5, 115-130.	8.3	69
21	Interplay between calcium signalling and early signalling elements during defence responses to microbe―or damageâ€associated molecular patterns. Plant Journal, 2011, 68, 100-113.	5.7	339
22	A cell wall extract from the endophytic fungus <i>Piriformospora indica</i> promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant Journal, 2009, 59, 193-206.	5.7	155
23	Loss of the vacuolar cation channel, AtTPC1, does not impair Ca ²⁺ signals induced by abiotic and biotic stresses. Plant Journal, 2008, 53, 287-299.	5.7	164
24	Bacteria-derived Peptidoglycans Constitute Pathogen-associated Molecular Patterns Triggering Innate Immunity in Arabidopsis. Journal of Biological Chemistry, 2007, 282, 32338-32348.	3.4	270
25	Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12205-12210.	7.1	248
26	Nucleoprotein Structure of Immediate-Early Promoters Zp and Rp and of oriLyt of Latent Epstein-Barr Virus Genomes. Journal of Virology, 2002, 76, 4113-4118.	3.4	11