Yuichi Mori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8264119/publications.pdf

Version: 2024-02-01

140 papers 4,450 citations

33 h-index 62 g-index

144 all docs 144 docs citations

144 times ranked 2593 citing authors

#	Article	IF	CITATIONS
1	Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy. Annals of Internal Medicine, 2018, 169, 357.	2.0	391
2	Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience. Gastroenterology, 2018, 154, 2027-2029.e3.	0.6	281
3	Artificial Intelligence-assisted System Improves Endoscopic Identification of Colorectal Neoplasms. Clinical Gastroenterology and Hepatology, 2020, 18, 1874-1881.e2.	2.4	167
4	Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointestinal Endoscopy, 2019, 89, 408-415.	0.5	165
5	Characterization of Colorectal Lesions Using a Computer-Aided Diagnostic System for Narrow-Band Imaging Endocytoscopy. Gastroenterology, 2016, 150, 1531-1532.e3.	0.6	158
6	Diagnosis of colorectal lesions with a novel endocytoscopic classification – a pilot study. Endoscopy, 2011, 43, 869-875.	1.0	142
7	Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis. Endoscopy, 2021, 53, 277-284.	1.0	139
8	Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointestinal Endoscopy, 2015, 81, 621-629.	0.5	136
9	Computer-aided diagnosis for colonoscopy. Endoscopy, 2017, 49, 813-819.	1.0	130
10	Artificial intelligence in gastrointestinal endoscopy: The future is almost here. World Journal of Gastrointestinal Endoscopy, 2018, 10, 239-249.	0.4	122
11	Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointestinal Endoscopy, 2021, 93, 960-967.e3.	0.5	111
12	Accuracy of diagnosing invasive colorectal cancer using computer-aided endocytoscopy. Endoscopy, 2017, 49, 798-802.	1.0	109
13	Artificial intelligence and colonoscopy: Current status and future perspectives. Digestive Endoscopy, 2019, 31, 363-371.	1.3	108
14	Quality assurance of computer-aided detection and diagnosis in colonoscopy. Gastrointestinal Endoscopy, 2019, 90, 55-63.	0.5	104
15	Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy, 2018, 50, 230-240.	1.0	100
16	Artificial intelligence and upper gastrointestinal endoscopy: Current status and future perspective. Digestive Endoscopy, 2019, 31, 378-388.	1.3	100
17	Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node. Gastroenterology, 2021, 160, 1075-1084.e2.	0.6	99
18	Impact of an automated system for endocytoscopic diagnosis of small colorectal lesions: an international web-based study. Endoscopy, 2016, 48, 1110-1118.	1.0	98

#	Article	IF	CITATIONS
19	Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: an add-on analysis of a clinical trial (withÂvideo). Gastrointestinal Endoscopy, 2020, 92, 905-911.e1.	0.5	95
20	Machine learning in GI endoscopy: practical guidance in how to interpret a novel field. Gut, 2020, 69, 2035-2045.	6.1	85
21	Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. The Lancet Digital Health, 2022, 4, e436-e444.	5.9	78
22	Management of T1 colorectal cancers after endoscopic treatment based on the risk stratification of lymph node metastasis. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 1126-1132.	1.4	73
23	Comprehensive diagnostic ability of endocytoscopy compared with biopsy for colorectal neoplasms: a prospective randomized noninferiority trial. Endoscopy, 2013, 45, 98-105.	1.0	68
24	Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 757-766.	1.7	65
25	Simultaneous detection and characterization of diminutive polypsÂwithÂthe use of artificial intelligence during colonoscopy. VideoGIE, 2019, 4, 7-10.	0.3	51
26	Practical problems of measuring depth of submucosal invasion in T1 colorectal carcinomas. International Journal of Colorectal Disease, 2016, 31, 137-146.	1.0	45
27	Endocytoscopic microvasculature evaluation is a reliable new diagnostic method for colorectal lesions (with video). Gastrointestinal Endoscopy, 2015, 82, 912-923.	0.5	41
28	Double staining with crystal violet and methylene blue is appropriate for colonic endocytoscopy: <scp>A</scp> n <scp><i>in vivo</i></scp> prospective pilot study. Digestive Endoscopy, 2014, 26, 403-408.	1.3	40
29	Artificial intelligence in colonoscopy ―Now on the market. What's next?. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 7-11.	1.4	40
30	Endocytoscopy can provide additional diagnostic ability to magnifying chromoendoscopy for colorectal neoplasms. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 83-90.	1.4	39
31	Management and risk factor of stenosis after endoscopic submucosal dissection for colorectal neoplasms. Gastrointestinal Endoscopy, 2017, 86, 358-369.	0.5	39
32	Real-Time Artificial Intelligence–Based Optical Diagnosis of Neoplastic Polyps during Colonoscopy. , 2022, 1, .		36
33	Efficiency of endocytoscopy in differentiating types of serrated polyps. Gastrointestinal Endoscopy, 2014, 79, 648-656.	0.5	35
34	Establishing key research questions for the implementation of artificial intelligence in colonoscopy: a modified Delphi method. Endoscopy, 2021, 53, 893-901.	1.0	35
35	New-generation full-spectrum endoscopy versus standard forward-viewing colonoscopy: a multicenter, randomized, tandem colonoscopy trial (J-FUSE Study). Gastrointestinal Endoscopy, 2018, 88, 854-864.	0.5	34
36	Endocytoscopic narrow-band imaging efficiency for evaluation of inflammatory activity in ulcerative colitis. World Journal of Gastroenterology, 2015, 21, 2108-2115.	1.4	32

#	Article	IF	CITATIONS
37	Definition of competence standards for optical diagnosis of diminutive colorectal polyps: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy, 2022, 54, 88-99.	1.0	30
38	Artificial intelligence-assisted colonoscopy: A review of current state of practice and research. World Journal of Gastroenterology, 2021, 27, 8103-8122.	1.4	30
39	Current problems and perspectives of pathological risk factors for lymph node metastasis in T1 colorectal cancer: Systematic review. Digestive Endoscopy, 2022, 34, 901-912.	1.3	26
40	Current status and future perspective on artificial intelligence for lower endoscopy. Digestive Endoscopy, 2021, 33, 273-284.	1.3	25
41	Can artificial intelligence help to detect dysplasia in patients with ulcerative colitis?. Endoscopy, 2021, 53, E273-E274.	1.0	25
42	Narrow band imaging efficiency in evaluation of mucosal healing/relapse of ulcerative colitis. Endoscopy International Open, 2018, 06, E518-E523.	0.9	24
43	Detecting colorectal polyps via machine learning. Nature Biomedical Engineering, 2018, 2, 713-714.	11.6	24
44	Evaluation in real-time use of artificial intelligence during colonoscopy to predict relapse of ulcerative colitis: aâprospective study. Gastrointestinal Endoscopy, 2022, 95, 747-756.e2.	0.5	23
45	Potential of artificial intelligenceâ€assisted colonoscopy using an endocytoscope (with video). Digestive Endoscopy, 2018, 30, 52-53.	1.3	22
46	Risk factors of recurrence in T1 colorectal cancers treated by endoscopic resection alone or surgical resection with lymph node dissection. International Journal of Colorectal Disease, 2018, 33, 1029-1038.	1.0	22
47	Hopes and Hypes for Artificial Intelligence in Colorectal Cancer Screening. Gastroenterology, 2021, 161, 774-777.	0.6	21
48	Left-sided location is a risk factor for lymph node metastasis of T1 colorectal cancer: a single-center retrospective study. International Journal of Colorectal Disease, 2020, 35, 1911-1919.	1.0	20
49	Risk Stratification of T1 Colorectal Cancer Metastasis to Lymph Nodes: Current Status and Perspective. Gut and Liver, 2021, 15, 818-826.	1.4	20
50	Impact of the clinical use of artificial intelligence–assisted neoplasia detection for colonoscopy: a large-scale prospective, propensity score–matched study (with video). Gastrointestinal Endoscopy, 2022, 95, 155-163.	0.5	19
51	Diagnostic performance of endocytoscopy for evaluating the invasion depth of different morphological types of colorectal tumors. Digestive Endoscopy, 2015, 27, 755-762.	1.3	18
52	Artificial intelligence for early gastric cancer: early promise and the path ahead. Gastrointestinal Endoscopy, 2019, 89, 816-817.	0.5	18
53	Patient gender as a factor associated with lymph node metastasis in T1 colorectal cancer: A systematic review and meta-analysis. Molecular and Clinical Oncology, 2017, 6, 517-524.	0.4	16
54	Classification of nuclear morphology in endocytoscopy of colorectal neoplasms. Gastrointestinal Endoscopy, 2017, 85, 628-638.	0.5	15

#	Article	IF	CITATIONS
55	Treatment policy for colonic laterally spreading tumors based on each clinicopathologic feature of 4 subtypes: actual status of pseudo-depressed type. Gastrointestinal Endoscopy, 2020, 92, 1083-1094.e6.	0.5	15
56	Comparative clinicopathological characteristics of colon and rectal T1 carcinoma. Oncology Letters, 2017, 13, 805-810.	0.8	14
57	Endoscopic management of colorectal tumors less than 10Âmm in size: Current status and future perspectives in Japan from a questionnaire survey. Digestive Endoscopy, 2018, 30, 36-40.	1.3	14
58	Artificial intelligence-assisted colonic endocytoscopy for cancer recognition: a multicenter study. Endoscopy International Open, 2021, 09, E1004-E1011.	0.9	14
59	Covid-19 transmission in fitness centers in Norway - a randomized trial. BMC Public Health, 2021, 21, 2103.	1.2	14
60	Comprehensive Diagnostic Performance of Real-Time Characterization of Colorectal Lesions Using an Artificial Intelligence–Assisted System: A Prospective Study. Gastroenterology, 2022, 163, 323-325.e3.	0.6	14
61	â€'Head Invasion' Is Not a Metastasis-Free Condition in Pedunculated T1 Colorectal Carcinomas Based on the Precise Histopathological Assessment. Digestion, 2016, 94, 166-175.	1.2	13
62	Endocytoscopy for the differential diagnosis of colorectal low-grade adenoma: a novel possibility for the "resect and discard―strategy. Gastrointestinal Endoscopy, 2020, 91, 676-683.	0.5	13
63	Beyond complete endoscopic healing: goblet appearance using an endocytoscope to predict future sustained clinical remission in ulcerative colitis. Digestive Endoscopy, 2021, , .	1.3	13
64	Combined endocytoscopy with pit pattern diagnosis in ulcerative colitisâ€associated neoplasia: Pilot study. Digestive Endoscopy, 2021, , .	1.3	12
65	Endocytoscopic intramucosal capillary network changes and crypt architecture abnormalities can predict relapse in patients with an ulcerative colitis Mayo endoscopic score of 1. Digestive Endoscopy, 2020, 32, 1082-1091.	1.3	11
66	Comparing the number and relevance of false activations between 2 artificial intelligence computer-aided detection systems: the NOISE study. Gastrointestinal Endoscopy, 2022, 95, 975-981.e1.	0.5	11
67	ls it proper to use nonâ€magnified narrowâ€band imaging for esophageal neoplasia screening? Japanese singleâ€center, prospective study. Digestive Endoscopy, 2012, 24, 412-418.	1.3	10
68	Evaluation of microvascular findings of deeply invasive colorectal cancer by endocytoscopy with narrow-band imaging. Endoscopy International Open, 2016, 04, E1280-E1285.	0.9	10
69	Tu1990 ARTIFICIAL INTELLIGENCE-ASSISTED POLYP DETECTION SYSTEM FOR COLONOSCOPY, BASED ON THE LARGEST AVAILABLE COLLECTION OF CLINICAL VIDEO DATA FOR MACHINE LEARNING. Gastrointestinal Endoscopy, 2019, 89, AB646-AB647.	0.5	10
70	Artificial intelligence and colonoscopy: the time is ripe to begin clinical trials. Endoscopy, 2019, 51, 219-220.	1.0	10
71	Diagnosis of sessile serrated adenomas/polyps using endocytoscopy (with videos). Digestive Endoscopy, 2016, 28, 43-48.	1.3	9
72	A novel ability of endocytoscopy to diagnose histological grade of differentiation in T1 colorectal carcinomas. Endoscopy, 2017, 50, 69-74.	1.0	9

#	Article	IF	CITATIONS
73	Towards Automated Colonoscopy Diagnosis: Binary Polyp Size Estimation via Unsupervised Depth Learning. Lecture Notes in Computer Science, 2018, , 611-619.	1.0	9
74	Clinical Efficacy of Endocytoscopy for Gastrointestinal Endoscopy. Clinical Endoscopy, 2021, 54, 455-463.	0.6	8
75	Novel "resect and analysis―approach for T2 colorectal cancer with use of artificial intelligence. Gastrointestinal Endoscopy, 2022, 96, 665-672.e1.	0.5	8
76	Artificial Intelligence Improves Detection at Colonoscopy: Why Aren't We All Already Using It?. Gastroenterology, 2022, 163, 35-37.	0.6	8
77	Magnifying narrow-band imaging of surface patterns for diagnosing colorectal cancer. Oncology Reports, 2013, 30, 350-356.	1.2	7
78	The concept of ‴Semi-clean colon' using the pit pattern classification system has the potential to be acceptable in combination with a <3-year surveillance colonoscopy. Oncology Letters, 2017, 14, 2735-2742.	0.8	7
79	Artificial Intelligence for Colorectal Polyp Detection and Characterization. Current Treatment Options in Gastroenterology, 2020, 18, 200-211.	0.3	7
80	Endocytoscopy with NBI has the potential to correctly diagnose diminutive colorectal polyps that are difficult to diagnose using conventional NBI. Endoscopy International Open, 2020, 08, E360-E367.	0.9	7
81	Depressed Colorectal Cancer: A New Paradigm in Early Colorectal Cancer. Clinical and Translational Gastroenterology, 2020, 11, e00269.	1.3	7
82	Artificial intelligence in colonoscopy: A review on the current status. DEN Open, 2022, 2, .	0.5	7
83	Malignant peritoneal mesothelioma with lymph node metastasis that originated in the transverse colon. World Journal of Surgical Oncology, 2014, 12, 112.	0.8	6
84	Tumor Diameter Is an Easy and Useful Predictor of Recurrence in Stage II Colorectal Cancer. Digestive Surgery, 2015, 32, 338-343.	0.6	6
85	Retrospective analysis of large bowel obstruction or perforation caused by oral preparation for colonoscopy. Endoscopy International Open, 2017, 05, E471-E476.	0.9	6
86	White light-emitting contrast image capsule endoscopy for visualization of small intestine lesions: a pilot study. Endoscopy International Open, 2018, 06, E315-E321.	0.9	6
87	Tumor Location as a Prognostic Factor in T1 Colorectal Cancer. Journal of the Anus, Rectum and Colon, 2022, 6, 9-15.	0.4	6
88	Strengths and Weaknesses of an Artificial Intelligence Polyp Detection Program as Assessed by a High-Detecting Endoscopist. Gastroenterology, 2022, 163, 354-358.e1.	0.6	6
89	Comparison of the endocytoscopic and clinicopathologic features of colorectal neoplasms. Endoscopy International Open, 2016, 04, E397-E402.	0.9	5
90	Endoscopic diagnosis of colorectal serrated lesions: Current status and future perspectives based on the results of a questionnaire survey. Digestive Endoscopy, 2016, 28, 35-42.	1.3	5

#	Article	IF	CITATIONS
91	Use of endocytoscopy for identification of sessile serrated adenoma/polyps and hyperplastic polyps by quantitative image analysis of the luminal areas. Endoscopy International Open, 2017, 05, E769-E774.	0.9	5
92	Stable polypâ€scene classification via subsampling and residual learning from an imbalanced large dataset. Healthcare Technology Letters, 2019, 6, 237-242.	1.9	5
93	Can artificial intelligence standardise colonoscopy quality?. The Lancet Gastroenterology and Hepatology, 2020, 5, 331-332.	3.7	5
94	Artificial intelligence for disease diagnosis: the criterion standard challenge. Gastrointestinal Endoscopy, 2022, 96, 370-372.	0.5	5
95	Depressed-Type Colonic Lesions and "De Novo―Cancer in Familial Adenomatous Polyposis: A Colonoscopist's Viewpoint. ISRN Gastroenterology, 2013, 2013, 1-6.	1.5	4
96	Magnifying chromoendoscopic and endocytoscopic findings of juvenile polyps in the colon and rectum. Oncology Letters, 2016, 11, 237-242.	0.8	4
97	Morphology as a risk factor for the malignant potential of T2 colorectal cancer. Molecular and Clinical Oncology, 2016, 5, 223-226.	0.4	4
98	In vivo detection of desmoplastic reaction using endocytoscopy: A new diagnostic marker of submucosal or more extensive invasion in colorectal carcinoma. Molecular and Clinical Oncology, 2017, 6, 291-295.	0.4	4
99	Diminutive intramucosal invasive (Tis) sigmoid colon carcinoma. Clinical Journal of Gastroenterology, 2018, 11, 359-363.	0.4	4
100	Clinicopathological features of T1 colorectal carcinomas with skip lymphovascular invasion. Oncology Letters, 2018, 16, 7264-7270.	0.8	4
101	The ability of positron emission tomography/computed tomography to detect synchronous colonic cancers in patients with obstructive colorectal cancer. Molecular and Clinical Oncology, 2019, 10, 425-429.	0.4	4
102	Artificial intelligence and computer-aided diagnosis for colonoscopy: where do we stand now?. Translational Gastroenterology and Hepatology, 2021, 6, 0-0.	1.5	4
103	Al everywhere in endoscopy, not only for detection and characterization. Endoscopy International Open, 2021, 09, E627-E628.	0.9	4
104	Use of advanced endoscopic technology for optical characterization of neoplasia in patients with ulcerative colitis: Systematic review. Digestive Endoscopy, 2022, 34, 1297-1310.	1.3	4
105	How Far Will Clinical Application of Al Applications Advance for Colorectal Cancer Diagnosis?. Journal of the Anus, Rectum and Colon, 2020, 4, 47-50.	0.4	3
106	Shortâ€' and longâ€'term outcomes of selfâ€'expanding metallic stent placement vs. emergency surgery for malignant colorectal obstruction. Molecular and Clinical Oncology, 2021, 14, 63.	0.4	3
107	How to Integrate Artificial Intelligence in Gastrointestinal Practice. Gastroenterology, 2022, 162, 1583-1586.	0.6	3
108	Impact of artificial intelligence on colorectal polyp detection for early-career endoscopists: an international comparative study. Scandinavian Journal of Gastroenterology, 2022, 57, 1272-1277.	0.6	3

#	Article	IF	CITATIONS
109	<scp><i>In vivo</i></scp> assessment of a carcinoid tumor using endocytoscopy. Digestive Endoscopy, 2013, 25, 465-465.	1.3	2
110	Characteristics of colorectal tumours in asymptomatic patients with negative immunochemical faecal occult blood test results. Molecular and Clinical Oncology, 2015, 3, 1019-1024.	0.4	2
111	Charting a path forward for clinical research in artificial intelligence and gastroenterology. Digestive Endoscopy, 2022, 34, 4-12.	1.3	2
112	Colorectal polyp characterization with endocytoscopy: Ready for widespread implementation with artificial intelligence?. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2021, 52-53, 101721.	1.0	2
113	Addressing false-positive findings with artificial intelligence for polyp detection. Endoscopy, 2021, 53, 941-942.	1.0	2
114	Challenges in artificial intelligence for polyp detection. Digestive Endoscopy, 2022, 34, 870-871.	1.3	2
115	High-quality Studies of Artificial Intelligence in Colonoscopy Illuminate a Next Important Step. Gastroenterology, 2022, 163, 582-583.	0.6	2
116	Endocytoscopic findings of colorectal neuroendocrine tumors (with video). Endoscopy International Open, 2018, 06, E589-E593.	0.9	1
117	Artificial intelligence for magnifying endoscopy, endocytoscopy, and confocal laser endomicroscopy of the colorectum. Techniques and Innovations in Gastrointestinal Endoscopy, 2020, 22, 56-60.	0.4	1
118	Robust endocytoscopic image classification based on higher-order symmetric tensor analysis and multi-scale topological statistics. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 2049-2059.	1.7	1
119	Clinical and endoscopic characteristics of post-colonoscopy colorectal cancers detected within 10 years after a previous negative examination. Endoscopy International Open, 2021, 09, E1472-E1479.	0.9	1
120	Challenge to the "impossible― Gastrointestinal Endoscopy, 2021, 94, 639-640.	0.5	1
121	Cascade classification of endocytoscopic images of colorectal lesions for automated pathological diagnosis. , 2018, , .		1
122	Clinicopathological features of small T1 colorectal cancers. World Journal of Clinical Cases, 2021, 9, 10088-10097.	0.3	1
123	Identification of a small, depressed type of colorectal invasive cancer by an artificial intelligence-assisted detection system. Endoscopy, 2021, , .	1.0	1
124	Endoscopic full-thickness resection for complex colorectal lesions – what's the next step?. Scandinavian Journal of Gastroenterology, 2022, 57, 1531-1532.	0.6	1
125	Detecting colorectal polyps with use of artificial intelligence. Journal of Medical Artificial Intelligence, 0, 2, 11-11.	1.1	0
126	482 PERFORMANCE OF NON-EXPERT ENDOSCOPISTS IN OPTICAL BIOPSY OF DIMINUTIVE COLORECTAL POLYPS WITH REAL-TIME USE OF ARTIFICIAL INTELLIGENCE. Gastrointestinal Endoscopy, 2019, 89, AB89.	0.5	0

#	Article	IF	CITATIONS
127	Discriminative Feature Selection by Optimal Manifold Search for Neoplastic Image Recognition. Lecture Notes in Computer Science, 2019, , 534-549.	1.0	О
128	Endocytoscopy. , 2020, , 45-51.		0
129	Reply. Gastroenterology, 2021, 161, 733-734.	0.6	O
130	Clinicopathological characteristics of colorectal carcinoid tumor focusing on risk factors of lymph node metastasis. Progress of Digestive Endoscopy, 2011, 79, 46-50.	0.0	0
131	The newly developed MoviPrep can reduce the patients' burden in the preparation for colonoscopy. Progress of Digestive Endoscopy, 2014, 85, 47-50.	0.0	O
132	A case of gastrointestinal injury associated with nonsteroidal anti-inflammatory drug use. Progress of Digestive Endoscopy, 2018, 93, 113-115.	0.0	0
133	Polyp-size classification with RGB-D features for colonoscopy. , 2019, , .		O
134	Effects of the use of a wavy cap on the tip of the colonoscope on the training performance of novice endoscopists for colonoscopy. World Academy of Sciences Journal, 2020, 3, .	0.4	0
135	Artificial Intelligence for Diagnosing Colorectal Lesion. Nippon Laser Igakkaishi, 2021, , .	0.0	O
136	Commentary. Endoscopy, 2021, 53, 1287-1287.	1.0	0
137	Endoscopy: Computer-Aided Diagnostic System Based on Deep Learning Which Supports Endoscopists' Decision-Making on the Treatment of Colorectal Polyps. , 2022, , 337-342.		О
138	Uncertainty meets 3D-spatial feature in colonoscopic polyp-size determination. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 0, , 1-10.	1.3	0
139	Although depth prediction of colorectal cancer with artificial intelligence is clinically relevant, standardization of histopathologic diagnosis should also be taken care of. Gastrointestinal Endoscopy, 2022, , .	0.5	0
140	Commentary. Endoscopy, 2022, 54, 521-521.	1.0	0