Guang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8263919/publications.pdf

Version: 2024-02-01

119	1,611	18	31
papers	citations	h-index	g-index
120	120	120	626
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Microstructure and Properties of a Medium-Carbon Ti-Mo-Bearing Steel Treated by One-Step Quenching and Partitioning Treatment. Journal of Materials Engineering and Performance, 2022, 31, 297-304.	2.5	2
2	Comparison Between the Wear Behavior of U68CuCr and U71MnG Rail Steels. Journal of Materials Engineering and Performance, 2022, 31, 2896-2908.	2.5	1
3	Improving mechanical properties in high-carbon pearlitic steels by replacing partial V with Nb. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 834, 142622.	5. 6	16
4	Simultaneous Enhancement of Strength and Toughness in a Medium-Carbon Martensitic Steel by Ti-Mo Addition. Journal of Materials Engineering and Performance, 2022, 31, 4273-4281.	2.5	3
5	Effects of Tempering Temperature on the Microstructure, Strength, and Toughness of Medium-Carbon Ti–Mo-Bearing Martensitic Steel. Arabian Journal for Science and Engineering, 2022, 47, 9061-9073.	3.0	2
6	Effect of undercooled austenite ausforming on the role of the M–A constituents in the CGHAZ toughness of the HSLA steels with bainite structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142571.	5 . 6	12
7	Effect of Austempering below and above Ms on the Microstructure and Wear Performance of a Low-Carbon Bainitic Steel. Metals, 2022, 12, 104.	2.3	5
8	Effect of temperature, carbon content and crystallography on the lengthening kinetics of bainitic ferrite laths. Materials Characterization, 2022, 187, 111860.	4.4	2
9	Effect of Vanadium and Strain Rate on Hot Ductility of Low-Carbon Microalloyed Steels. Metals, 2022, 12, 14.	2.3	4
10	Comparative study of the role of niobium in low-carbon ferritic and bainitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 851, 143579.	5 . 6	6
11	Optimized Properties of a Quenching and Partitioning Steel by Quenching at Fine Martensite Start Temperature. Metals and Materials International, 2021, 27, 2473-2480.	3.4	13
12	Investigation on Microstructural Delamination and Compositional Segregation in Flange Steel with a High Stretch Ratio. Metals and Materials International, 2021, 27, 1587-1598.	3.4	6
13	In Situ Study on Interrupted Growth Behavior and Crystallography of Bainite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 817-825.	2.2	9
14	Microstructure and Wear Properties of a Bainite/Martensite Multi-phase Wear Resistant Steel. ISIJ International, 2021, 61, 434-441.	1.4	4
15	Influences of Quenching Temperature on the Microstructure Evolution and Strengthâ^'Toughness of a Novel Medium arbon Tiâ^'Moâ€Bearing Martensite Steel. Steel Research International, 2021, 92, 2100157.	1.8	2
16	Comparison of the Impact Wear Performances of Quenching and Partitioning and Quenching and Tempering Steels. Steel Research International, 2021, 92, 2100325.	1.8	3
17	Effects of Q&T Parameters on Phase Transformation, Microstructure, Precipitation and Mechanical Properties in an Oil Casing Steel. Physics of Metals and Metallography, 2021, 122, 1463-1472.	1.0	2
18	Enhanced Mechanical Properties in a Low-Carbon Ultrafine Grain Steel by Niobium Addition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 5123-5132.	2.2	6

#	Article	IF	CITATIONS
19	Effects of Isothermal Transformation at the Quenching Temperature on the Microstructure and Mechanical Properties of a Medium-Carbon Steel. Transactions of the Indian Institute of Metals, 2021, 74, 3265-3272.	1.5	3
20	Corrosion performance of a corrosion-resistant rail steel in the simulated subsea tunnel environment. Corrosion Reviews, 2021, 39, 561-571.	2.0	2
21	The Corrosion and Wear Behaviors of a Medium-Carbon Bainitic Steel Treated by Boro-Austempering Process. Metals, 2021, 11, 1959.	2.3	3
22	Effect of Deformation during Austempering on Bainite Transformation and Retained Austenite in a Medium arbon Bainitic Steel. Steel Research International, 2020, 91, 1900353.	1.8	1
23	In-Situ Observation of Martensitic Transformation in a Fe–C–Mn–Si Bainitic Steel During Austempering. Metals and Materials International, 2020, 26, 961-972.	3.4	16
24	Effects of Stress on Martensite Transformation During Continuous Cooling and Mechanical Response of a Medium-Carbon High-Strength Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 597-607.	2.2	10
25	Transformation kinetics of carbide-free bainitic steels during isothermal holding above and below MS. Journal of Materials Research and Technology, 2020, 9, 13594-13606.	5 . 8	12
26	Effect of Mo on the Precipitation Behavior of FB780 Steel with a High Hole-Expanding Ratio at Different Coiling Temperatures. Transactions of the Indian Institute of Metals, 2020, 73, 2817-2827.	1.5	3
27	The Effect of Primary Ferrite on Bainitic Transformation, Microstructure, and Properties of Low Carbon Bainitic Steel. Metal Science and Heat Treatment, 2020, 62, 306-314.	0.6	0
28	Investigation on the Oxidation Behavior of Dual-Phase Silicon-Containing Steel at Different Beginning Oxidation Temperatures. Arabian Journal for Science and Engineering, 2020, 45, 9015-9022.	3.0	4
29	New insights into the effects of deformation below-M on isothermal kinetics of bainitic transformation. Journal of Materials Research and Technology, 2020, 9, 15750-15758.	5.8	7
30	Impact of Al addition on deformation behavior of Fe–Cr–Ni–Mn–C austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140084.	5.6	11
31	Microstructure and Properties of a Mediumâ€Carbon Highâ€Strength Bainitic Steel Treated by Boroâ€Austempering Treatment. Steel Research International, 2020, 91, 2000128.	1.8	7
32	Quantitative Analysis of Microstructures and Strength of Nb-Ti Microalloyed Steel with Different Ti Additions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2084-2096.	2.2	27
33	Investigation on Microstructure and Properties of Lowâ€Carbon Wearâ€Resistant Steels with Addition of Cr and Ni. Steel Research International, 2020, 91, 1900677.	1.8	5
34	Effect of austempering time on microstructure and properties of a low-carbon bainite steel. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 340-346.	4.9	8
35	Effects of Q&T parameters on phase transformation, microstructure, precipitation and mechanical properties in a PS-30Cr2Nb pipeline steel. Materials Research Express, 2020, 7, 016536.	1.6	2
36	Effect of two-step ausforming on bainite transformation and retained austenite in a medium-carbon bainitic steel. Materials Research Express, 2020, 7, 016519.	1.6	5

#	Article	IF	Citations
37	Effect of Ausforming on Retained Austenite After Continuous Cooling Transformation in a Medium-Carbon High Strength Steel. Materials Research, 2020, 23, .	1.3	1
38	Optimizing Microstructure and Property by Ausforming in a Medium-carbon Bainitic Steel. ISIJ International, 2020, 60, 2007-2014.	1.4	11
39	Comparison of the strengthening effects of Nb, V, and Ti on the mechanical properties of 20MnSi low-alloy steel. International Journal of Materials Research, 2020, 111, 504-510.	0.3	1
40	Comprehensive Analysis of the Effect of Ausforming on the Martensite Start Temperature in a Fe-C-Mn-Si Medium-Carbon High-Strength Bainite Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4541-4549.	2.2	9
41	Effects of Undercooling and Transformation Time on Microstructure and Strength of Fe–C–Mn–Si Superbainitic Steel. Strength of Materials, 2019, 51, 439-449.	0.5	1
42	Investigation of characteristic and evolution of fine-grained bainitic microstructure in the coarse-grained heat-affected zone of super-high strength steel for offshore structure. Materials Characterization, 2019, 157, 109893.	4.4	18
43	Critical ausforming temperature to promote isothermal bainitic transformation in prior-deformed austenite. Materials Science and Technology, 2019, 35, 420-428.	1.6	18
44	Effect of Ni and Cr Addition on Transformation and Properties of Low-Carbon Bainitic Steels. Transactions of the Indian Institute of Metals, 2019, 72, 1167-1174.	1.5	7
45	Effects of Initial Austenite Grain Size on Microstructure and Mechanical Properties of 5% Nickel Cryogenic Steel. Metallography, Microstructure, and Analysis, 2019, 8, 241-248.	1.0	5
46	The Effect of Stress on Bainite Transformation, Microstructure, and Properties of a Low arbon Bainitic Steel. Steel Research International, 2019, 90, 1900159.	1.8	10
47	The Effects of Cooling Mode on the Properties of Ti–Nb Microalloyed High-strength Hot-rolled Steels. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 692-697.	1.0	5
48	Effect of austenisation temperature on bainite transformation below martensite starting temperature. Materials Science and Technology, 2019, 35, 1539-1550.	1.6	15
49	Correlations Between Microstructure and Dry Friction Wear Behavior of Zn–38Al–3.5Cu–1.2ÂMg Alloy Reinforced with SiC Nanoparticles. Transactions of the Indian Institute of Metals, 2019, 72, 2557-2565.	1.5	4
50	Investigating the Properties of Coil Tail in Ti–Nb–Mo Microalloyed Hotâ€Rolled Strip. Steel Research International, 2019, 90, 1900040.	1.8	19
51	Effects of Ni and Cr on Cryogenic Impact Toughness of Bainite/Martensite Multiphase Steels. Metals and Materials International, 2019, 25, 1151-1160.	3.4	13
52	A new method to predict mechanical properties for microalloyed steels via industrial data and mechanism analysis. Journal of Iron and Steel Research International, 2019, 26, 230-241.	2.8	6
53	Effects of Al addition on bainite transformation and properties of high-strength carbide-free bainitic steels. Journal of Iron and Steel Research International, 2019, 26, 846-855.	2.8	28
54	Combined Effects of Deformation and Undercooling on Isothermal Bainitic Transformation in an Fe-C-Mn-Si Alloy. Metals, 2019, 9, 138.	2.3	8

#	Article	IF	CITATIONS
55	Effects of Plastic Stress on Transformation Plasticity and Microstructure of a Carbide-Free Bainite Steel. Metallography, Microstructure, and Analysis, 2019, 8, 159-166.	1.0	6
56	Effects of Rolling Temperature on the Microstructure and Mechanical Properties in an Ultrafineâ€Grained Lowâ€Carbon Steel. Steel Research International, 2019, 90, 1800318.	1.8	13
57	Transformation Behavior and Properties of Carbideâ€Free Bainite Steels with Different Si Contents. Steel Research International, 2019, 90, 1800474.	1.8	17
58	Evaluation of Mechanical Properties and Microstructures of Ultrafine Grain Low-Carbon Steel Processed by Cryorolling and Annealing. Transactions of the Indian Institute of Metals, 2019, 72, 741-749.	1.5	13
59	Effect of Strain Rate on the Bainitic Transformation in Fe-C-Mn-Si Medium-Carbon Bainitic Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 573-580.	2.2	14
60	New insight to the oxidation kinetics of silicon-containing steel at high temperature. Materials at High Temperatures, 2018, 35, 552-557.	1.0	6
61	Effects of oxygen concentration on the passivation of Si-containing steel during high-temperature oxidation. Corrosion Reviews, 2018, 36, 385-393.	2.0	6
62	Refined Bainite Microstructure and Mechanical Properties of a Highâ€Strength Lowâ€Carbon Bainitic Steel Treated by Austempering Below and Above M _S . Steel Research International, 2018, 89, 1700469.	1.8	47
63	Effects of oxygen content on the oxidation process of Si-containing steel during anisothermal heating. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 164-172.	4.9	5
64	Kinetics model of bainitic transformation with stress. Metals and Materials International, 2018, 24, 28-34.	3.4	14
65	A Method to Reduce the Oxide Scale of Silicon-Containing Steels by Adjusting the Heating Route. Transactions of the Indian Institute of Metals, 2018, 71, 677-684.	1.5	6
66	In Situ Observation of the Lengthening Rate of Bainite Sheaves During Continuous Cooling Process in a Fe–C–Mn–Si Superbainitic Steel. Transactions of the Indian Institute of Metals, 2018, 71, 185-194.	1.5	16
67	Effect of Surface Oxidation on Decarburization of a Fe-3%Si Steel during Annealing. ISIJ International, 2018, 58, 1727-1734.	1.4	6
68	Composition Optimization of Nb-Ti Microalloyed High Strength Steel. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1193-1197.	1.0	6
69	Effect of Cold Deformation on Microstructures and Mechanical Properties of Austenitic Stainless Steel. Metals, 2018, 8, 522.	2.3	33
70	Transformation Behavior of Bainite during Two-step Isothermal Process in an Ultrafine Bainite Steel. ISIJ International, 2018, 58, 1875-1882.	1.4	17
71	Effect of Vanadium on the Microstructure and Property of Rebar Steel. Materials Science Forum, 2018, 928, 269-272.	0.3	1
72	Effect of Ni Addition on Bainite Transformation and Properties in a 2000ÂMPa Grade Ultrahigh Strength Bainitic Steel. Metals and Materials International, 2018, 24, 1202-1212.	3.4	15

#	Article	IF	Citations
73	Effect of Strain Rate on Deformation Resistance during Ausforming in Fe–C–Mn–Si Highâ€ S trength Bainite Steels. Steel Research International, 2018, 89, 1800201.	1.8	5
74	Effects of Tempering on the Microstructure and Properties of a High-Strength Bainite Rail Steel with Good Toughness. Metals, 2018, 8, 484.	2.3	25
75	Effect of Rolling Reduction on Microstructure and Property of Ultrafine Grained Low-Carbon Steel Processed by Cryorolling Martensite. Metals, 2018, 8, 518.	2.3	23
76	Effects of Mn on microstructures and properties of hot rolled low carbon bainitic steels. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 186-189.	1.0	5
77	New insights to the promoted bainitic transformation in prior deformed austenite in a Fe-C-Mn-Si alloy. Metals and Materials International, 2017, 23, 233-238.	3.4	13
78	Effects of Nb Addition on Transformation Kinetics and Microstructure Properties in Low-Carbon Bainitic Steels. Metallography, Microstructure, and Analysis, 2017, 6, 158-163.	1.0	4
79	Effect of Annealing on the Microstructure and Mechanical Properties of a Low-Carbon Steel with Ultrafine Grains. Metallography, Microstructure, and Analysis, 2017, 6, 233-239.	1.0	13
80	The Effect of Large Stress on Bainitic Transformation at Different Transformation Temperatures. Steel Research International, 2017, 88, 1600377.	1.8	10
81	Comprehensive analysis on the effects of different stress states on the bainitic transformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 704, 427-433.	5.6	18
82	The Recrystallization Behavior in Ultrafine-Grained Structure Steel Fabricated by Cold Rolling and Annealing. Arabian Journal for Science and Engineering, 2017, 42, 4771-4777.	3.0	12
83	Effects of Austenitization Temperature and Compressive Stress During Bainitic Transformation on the Stability of Retained Austenite. Transactions of the Indian Institute of Metals, 2017, 70, 1447-1453.	1.5	14
84	Effects of Strain and Deformation Temperature on Bainitic Transformation in a Fe-C-Mn-Si Alloy. Steel Research International, 2017, 88, 1600170.	1.8	9
85	The Morphologies of Different Types of Fe2SiO4–FeO in Si-Containing Steel. Metals, 2017, 7, 8.	2.3	7
86	The Effects of Cr and Al Addition on Transformation and Properties in Low arbon Bainitic Steels. Metals, 2017, 7, 40.	2.3	39
87	Bainitic Transformation and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr Addition. Metals, 2017, 7, 263.	2.3	31
88	Method to Evaluate the Kinetics of Bainite Transformation in Low-Temperature Nanobainitic Steel Using Thermal Dilatation Curve Analysis. Metals, 2017, 7, 330.	2.3	14
89	The Effect of P on the Microstructure and Melting Temperature of Fe2SiO4 in Silicon-Containing Steels Investigated by In Situ Observation. Metals, 2017, 7, 37.	2.3	12
90	The Effect of the Si Content on the Morphology and Amount of Fe2SiO4 in Low Carbon Steels. Metals, 2016, 6, 94.	2.3	21

#	Article	IF	Citations
91	The Varying Effects of Uniaxial Compressive Stress on the Bainitic Transformation under Different Austenitization Temperatures. Metals, 2016, 6, 119.	2.3	15
92	Effect of Oxidation Temperature on the Oxidation Process of Silicon-Containing Steel. Metals, 2016, 6, 137.	2.3	23
93	Effect of Mo Content on Microstructure and Property of Low-Carbon Bainitic Steels. Metals, 2016, 6, 173.	2.3	37
94	Effects of Ultra-Fast Cooling Technology on Microstructure and Properties of Low Carbon Steel. Metallography, Microstructure, and Analysis, 2016, 5, 135-141.	1.0	2
95	New insights into the effects of silicon content on the oxidation process in silicon-containing steels. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 1048-1055.	4.9	11
96	Combined effect of the prior deformation and applied stress on the bainite transformation. Metals and Materials International, 2016, 22, 956-961.	3.4	21
97	Effect of Undercooling and Austenitic Grain Size on Bainitic Transformation in an Fe–C–Mn–Si Superbainite Steel. Transactions of the Indian Institute of Metals, 2016, 69, 693-698.	1.5	14
98	New insights to the effects of ausforming on the bainitic transformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 34-40.	5.6	76
99	The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels. Materials and Design, 2015, 84, 95-99.	7.0	107
100	Effect of ausforming on the stability of retained austenite in a C-Mn-Si bainitic steel. Metals and Materials International, 2015, 21, 929-935.	3.4	35
101	Dynamic observation of bainite transformation in a Fe-C-Mn-Si superbainite steel. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 818-821.	1.0	9
102	The effects of external compressive stress on the kinetics of low temperature bainitic transformation and microstructure in a superbainite steel. International Journal of Materials Research, 2015, 106, 1040-1045.	0.3	10
103	Comprehensive analysis of the dilatation during bainitic transformation under stress. Metals and Materials International, 2015, 21, 985-990.	3.4	13
104	Research on Continuous Cooling Transformation Curve of a C-Si-Mn Steel. Applied Mechanics and Materials, 2014, 556-562, 404-407.	0.2	2
105	Dynamic observation of twin evolution during austenite grain growth in an Fe–C–Mn–Si alloy. International Journal of Materials Research, 2014, 105, 337-341.	0.3	10
106	The Effects of Cooling Mode on Precipitation and Mechanical Properties of a Ti-Nb Microalloyed Steel. Journal of Materials Engineering and Performance, 2014, 23, 4216-4222.	2.5	14
107	Research on CCT Curve of 12Cr2Mo1R Pressure Vessel Steel. Applied Mechanics and Materials, 2014, 556-562, 468-471.	0.2	0
108	Mechanical Behavior of Carbide-free Medium Carbon Bainitic Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1352-1361.	2.2	24

#	Article	IF	CITATIONS
109	In situ measured growth rates of bainite plates in an Fe-C-Mn-Si superbainitic steel. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 371-378.	4.9	26
110	A new approach to quantitative analysis of bainitic transformation in a superbainite steel. Scripta Materialia, 2013, 68, 833-836.	5.2	84
111	Influence of Microstructural Length Scale on the Strength and Annealing Behavior of Pearlite, Bainite, and Martensite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 1454-1461.	2.2	10
112	In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 1060-1066.	4.9	16
113	The development of Ti-alloyed high strength microalloy steel. Materials & Design, 2010, 31, 2891-2896.	5.1	111
114	Deformation behavior of ultra-low carbon steel in ferrite region during warm processing. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 29-32.	1.0	3
115	A new method for accurate plotting continuous cooling transformation curves. Materials Letters, 2008, 62, 3978-3980.	2.6	11
116	Influence of Annealing Technology on Drawing Properties of Cold Sheets Rolled with Compact Strip Production Hot Bands. ISIJ International, 2007, 47, 1767-1771.	1.4	6
117	Enhanced Thermal Stability of the Lowâ€Carbon Ultrafine Grain Steel with Nanoprecipitates. Steel Research International, 0, , 2100320.	1.8	2
118	Microstructure and Crystallography of a Carbide-Free Bainite Steel Under the Effect of Stress. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 0, , 1.	2.2	0
119	Effect of highâ€temperature deformation on bainite transformation of a lowâ€carbon bainite steel. Steel Research International, 0, , .	1.8	O