Jegan Josephraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/826373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. Journal of Hazardous Materials, 2004, 113, 223-230.	6.5	179
2	Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Separation and Purification Technology, 2005, 44, 53-59.	3.9	164
3	Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornata. Chemical Engineering Journal, 2005, 106, 177-184.	6.6	153
4	Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere, 2005, 60, 419-426.	4.2	144
5	Biochar for removal of dyes in contaminated water: an overview. Biochar, 2022, 4, 1.	6.2	93
6	Durability Study on High Calcium Fly Ash Based Geopolymer Concrete. Advances in Materials Science and Engineering, 2015, 2015, 1-7.	1.0	64
7	Investigation on removal of malachite green using EM based compost as adsorbent. Ecotoxicology and Environmental Safety, 2015, 118, 177-182.	2.9	61
8	Techno-economic feasibility of biochar as biosorbent for basic dye sequestration. Journal of the Indian Chemical Society, 2021, 98, 100107.	1.3	61
9	Remediation of remazol dyes by biochar derived from Caulerpa scalpelliformis—An eco-friendly approach. Journal of Environmental Chemical Engineering, 2019, 7, 103297.	3.3	53
10	Removal and recovery of copper from aqueous solution by eggshell in a packed column. Minerals Engineering, 2005, 18, 545-547.	1.8	49
11	Remediation of complex remazol effluent using biochar derived from green seaweed biomass. International Journal of Phytoremediation, 2019, 21, 1179-1189.	1.7	33
12	Entrapment of brown seaweeds (Turbinaria conoides and Sargassum wightii) in polysulfone matrices for the removal of praseodymium ions from aqueous solutions. Journal of Rare Earths, 2015, 33, 1196-1203.	2.5	28
13	SORPTION KINETICS AND ISOTHERM STUDIES OF CATIONIC DYES USING GROUNDNUT (ARACHIS HYPOGAEA) SHELL DERIVED BIOCHAR A LOW-COST ADSORBENT. Applied Ecology and Environmental Research, 2020, 18, 1925-1939.	0.2	28
14	Naphthalene Degradation Kinetics of <i>Micrococcus</i> sp., Isolated from Activated Sludge. Clean - Soil, Air, Water, 2010, 38, 837-842.	0.7	27
15	A novel sorbent <i>Ulva lactuca</i> â€derived biochar for remediation of Remazol Brilliant Orange 3R in packed column. Water Environment Research, 2019, 91, 642-649.	1.3	26
16	Nickel Recovery from Aqueous Solution Using Crab Shell Particles. Adsorption Science and Technology, 2005, 23, 303-312.	1.5	24
17	Malachite green and crystal violet biosorption onto coco-peat: characterization and removal studies. Desalination and Water Treatment, 2016, 57, 6423-6431.	1.0	24
18	Evaluation of the adsorptive removal of cationic dyes by greening biochar derived from agricultural bio-waste of rice husk. Biomass Conversion and Biorefinery, 2023, 13, 4047-4060.	2.9	22

Jegan Josephraj

#	Article	IF	CITATIONS
19	Biodecolorization of Basic Violet 03 Using Biochar Derived from Agricultural Wastes: Isotherm and Kinetics. Journal of Biobased Materials and Bioenergy, 2020, 14, 316-326.	0.1	21
20	Isotherm, kinetics and mechanistic studies of methylene blue biosorption onto red seaweed <i>Gracilaria corticata</i> . Desalination and Water Treatment, 2016, 57, 13540-13548.	1.0	20
21	Utilization of Effective Microorganisms based water hyacinth compost as biosorbent for the removal of basic dyes. Desalination and Water Treatment, 2016, 57, 24368-24377.	1.0	19
22	Batch and column removal of total chromium from aqueous solution using <i>Sargassum polycystum</i> . Environmental Progress and Sustainable Energy, 2010, 29, 334-341.	1.3	17
23	Evaluation of the adsorption capacity of <i>Cocos Nucifera</i> shell derived biochar for basic dyes sequestration from aqueous solution. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-17.	1.2	16
24	Evaluation of Red Marine AlgaKappaphycus alvareziias Biosorbent for Methylene Blue: Isotherm, Kinetic, and Mechanism Studies. Separation Science and Technology, 2015, 50, 1120-1126.	1.3	15
25	Comparative Desorption Studies on Remediation of Remazol Dyes Using Biochar (Sorbent) Derived from Green Marine Seaweeds. ChemistrySelect, 2019, 4, 7437-7445.	0.7	15
26	Application of seaweeds for the removal of cationic dye from aqueous solution. Desalination and Water Treatment, 2016, 57, 25812-25821.	1.0	14
27	A Critical Insight into Biomass Derived Biosorbent for Bioremediation of Dyes. ChemistrySelect, 2019, 4, 9762-9775.	0.7	14
28	Effects of Concentrical Partial (Local) Compression on the Structural Behavior of Concrete Filled Steel Tubular Column. Advances in Materials Science and Engineering, 2015, 2015, 1-9.	1.0	9
29	A study on catalytic activity of modified Ni–Re/Al-SBA-15 catalyst for hydrodenitrogenation of o-toluidine. International Journal of Hydrogen Energy, 2020, 45, 4328-4340.	3.8	9
30	Continuous sorption of methylene blue dye from aqueous solution using effective microorganisms-based water hyacinth waste compost in a packed column. Biomass Conversion and Biorefinery, 2023, 13, 1189-1198.	2.9	9
31	Biodecolorization of Basic Blue 41 using EM based Composts: Isotherm and Kinetics. ChemistrySelect, 2019, 4, 10006-10012.	0.7	8
32	A comprehensive analysis of biosorptive removal of basic dyes by different biosorbents. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100560.	1.7	8
33	Enhanced catalytic activity of Ni-Re/H- AlMCM-41 catalyst via surface modification for hydrodenitrogenation of o-toluidine. Materials Research Express, 2018, 5, 065516.	0.8	6
34	A detailed investigation on rhenium loaded SBA-15 supported catalyst for hydrodenitrogenation reaction of cyclohexylamine. Journal of Porous Materials, 2020, 27, 83-93.	1.3	3
35	Copper removal from aqueous solution by marine green alga Ulva reticulata. Electronic Journal of Biotechnology, 2004, 7, .	1.2	3
36	Modified crab shell particles for the removal of lead[II] ions from aqueous solutions. International Journal of Environment and Waste Management, 2012, 9, 232.	0.2	0

#	Article	IF	CITATIONS
37	Surface Modified Synthetic Plastic Aggregate for Concrete – Experimental and Analytical Studies. Medziagotyra, 0, , .	0.1	0