N J O Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8263209/publications.pdf

Version: 2024-02-01

110170 185998 4,160 76 28 64 h-index citations g-index papers 79 79 79 5405 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In situ functionalization of a cellulosic-based activated carbon with magnetic iron oxides for the removal of carbamazepine from wastewater. Environmental Science and Pollution Research, 2021, 28, 18314-18327.	2.7	23
2	Efficient Brownian oscillators and nanoheaters based on gallium-doped $\hat{l}\mu\text{-Fe2O3}.$ Chemical Communications, 2021, 57, 2285-2288.	2.2	2
3	Magnetic hyperthermia with Îμ-Fe ₂ O ₃ nanoparticles. RSC Advances, 2020, 10, 28786-28797.	1.7	36
4	Density Gradient Selection of Colloidal Silver Nanotriangles for Assembling Dye-Particle Plasmophores. Nanomaterials, 2019, 9, 893.	1.9	5
5	Temperature-responsive nanomagnetic logic gates for cellular hyperthermia. Materials Horizons, 2019, 6, 524-530.	6.4	9
6	Integrated Optical Mach-Zehnder Interferometer Based on Organic-Inorganic Hybrids for Photonics-on-a-Chip Biosensing Applications. Sensors, 2018, 18, 840.	2.1	24
7	Implementing Thermometry on Silicon Surfaces Functionalized by Lanthanideâ€Doped Selfâ€Assembled Polymer Monolayers. Advanced Functional Materials, 2016, 26, 200-209.	7.8	42
8	Influence of the surface termination on the light emission of crystalline silicon nanoparticles. Nanotechnology, 2016, 27, 325703.	1.3	9
9	Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM). Microscopy and Microanalysis, 2016, 22, 1270-1280.	0.2	15
10	Scanning Thermal Microscopy: Nano-localized Thermal Analysis and Mapping of Surface and Subsurface Thermal Properties. Microscopy and Microanalysis, 2016, 22, 2-3.	0.2	1
11	Joining Time-Resolved Thermometry and Magnetic-Induced Heating in a Single Nanoparticle Unveils Intriguing Thermal Properties. ACS Nano, 2015, 9, 3134-3142.	7.3	135
12	Bionanocomposites for Magnetic Removal of Water Pollutants. Advanced Structured Materials, 2015, , 279-310.	0.3	7
13	Carrageenan-grafted magnetite nanoparticles as recyclable sorbents for dye removal. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	22
14	Contact angles and wettability of ionic liquids on polar and non-polar surfaces. Physical Chemistry Chemical Physics, 2015, 17, 31653-31661.	1.3	77
15	Cobalt aluminate nanoparticles supported on MIL-101 structure: catalytic performance investigation. RSC Advances, 2015, 5, 4175-4183.	1.7	11
16	Chapter 8. Organic–Inorganic Hybrids Thermometry. RSC Nanoscience and Nanotechnology, 2015, , 237-272.	0.2	1
17	Cobalt(<scp>ii</scp>)–pyrazine–chloride coordination polymers: synthesis, reactivity and magnetic properties. CrystEngComm, 2014, 16, 10439-10444.	1.3	12
18	Multifunctional micro- and nanosized metal–organic frameworks assembled from bisphosphonates and lanthanides. Journal of Materials Chemistry C, 2014, 2, 3311.	2.7	44

#	Article	IF	Citations
19	Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids. Nanoscale, 2013, 5, 7572.	2.8	87
20	Magnetically responsive dry fluids. Nanoscale, 2013, 5, 7229.	2.8	7
21	Pressure effects in hollow and solid iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2013, 335, 1-5.	1.0	1
22	Thermometry at the nanoscale using lanthanide-containing organic–inorganic hybrid materials. Journal of Luminescence, 2013, 133, 230-232.	1.5	56
23	Influence of structural and magnetic properties in the heating performance of multicore bioferrofluids. Physical Review B, 2013, 88, .	1.1	11
24	Metal–Organic Frameworks Assembled From Erbium Tetramers and 2,5-Pyridinedicarboxylic Acid. Crystal Growth and Design, 2013, 13, 2607-2617.	1.4	25
25	Synthesis of cobalt aluminate nanopigments by a non-aqueous sol–gel route. Nanoscale, 2013, 5, 4277.	2.8	27
26	Efficient sorbents based on magnetite coated with siliceous hybrid shells for removal of mercury ions. Journal of Materials Chemistry A, 2013, 1, 8134.	5.2	71
27	Shell pressure on the core of MnO/Mn <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> O <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:msub><mml:mrow display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"></mml:mrow></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:m< td=""><td>1.1</td><td>12</td></mml:m<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:math>	1.1	12
28	Organic–Inorganic Eu3+/Tb3+ codoped hybrid films for temperature mapping in integrated circuits. Frontiers in Chemistry, 2013, 1, 9.	1.8	41
29	Texture-induced magnetic interactions in ferrofluids. Journal of Applied Physics, 2012, 111, 093910.	1.1	5
30	A Single-Source Route for the Synthesis of Metal Oxide Nanoparticles Using Vegetable Oil Solvents. Journal of Nanoscience and Nanotechnology, 2012, 12, 8963-8968.	0.9	7
31	Water-mediated structural tunability of an alkyl/siloxane hybrid: from amorphous material to lamellar structure or bilamellar superstructure. RSC Advances, 2012, 2, 2087.	1.7	35
32	Thermometry at the nanoscale. Nanoscale, 2012, 4, 4799.	2.8	1,258
33	Co ^{II} Zn ^{II} –(<scp>L</scp> ‶yrosine) Magnetic Metal–Organic Frameworks. European Journal of Inorganic Chemistry, 2012, 2012, 5259-5268.	1.0	18
34	Lanthanide-based luminescent molecular thermometers. New Journal of Chemistry, 2011, 35, 1177.	1.4	266
35	Shifted loops and coercivity from field-imprinted high-energy barriers in ferritin and ferrihydrite nanoparticles. Physical Review B, 2011, 84, .	1.1	29
36	Neutron diffraction and magnetism of CoO antiferromagnetic nanoparticles. Journal of Physics: Conference Series, 2011, 325, 012020.	0.3	5

#	Article	IF	CITATIONS
37	Scaling laws and approximate expressions for the dynamic magnetic susceptibility of Brownian nanoparticles. Journal of Magnetism and Magnetic Materials, 2011, 323, 3259-3264.	1.0	O
38	Magnetic and relaxation properties of multifunctional polymerâ€based nanostructured bioferrofluids as MRI contrast agents. Magnetic Resonance in Medicine, 2011, 66, 1715-1721.	1.9	30
39	Mixedâ€Metal dâ€f Phosphonate Frameworks – Photoluminescence and Magnetic Properties. European Journal of Inorganic Chemistry, 2011, 2011, 2035-2044.	1.0	23
40	A Luminescent Molecular Thermometer for Longâ€Term Absolute Temperature Measurements at the Nanoscale. Advanced Materials, 2010, 22, 4499-4504.	11.1	405
41	Estimating spontaneous magnetization from a mean field analysis of the magnetic entropy change. Journal of Magnetism and Magnetic Materials, 2010, 322, 1569-1571.	1.0	45
42	Effects of pressure on maghemite nanoparticles with a core/shell structure. Journal of Magnetism and Magnetic Materials, 2010, 322, 2117-2126.	1.0	8
43	Remanent magnetization in CoO antiferromagnetic nanoparticles. Physical Review B, 2010, 82, .	1.1	18
44	Particle-diameter dependence of the coercive field in FePt nanoparticles with a face-centered tetragonal structure. Journal of Applied Physics, 2010, 108, 124315.	1.1	5
45	Temperature dependence of antiferromagnetic susceptibility in ferritin. Physical Review B, 2009, 79, .	1.1	45
46	Radial inhomogeneities induced by fiber diameter in electrically assisted LFZ growth of Bi-2212. Applied Surface Science, 2009, 255, 5503-5506.	3.1	14
47	Akaganeite polymer nanocomposites. Polymer, 2009, 50, 1088-1094.	1.8	25
48	Surface and core magnetic anisotropy in maghemite nanoparticles determined by pressure experiments. Applied Physics Letters, 2009, 94, .	1.5	42
49	Heterometallic complexes involving iron(ii) and rhenium(vii) centers connected by $\hat{l}^{1}\!\!/4$ -oxido bridges. Dalton Transactions, 2009, , 10199.	1.6	6
50	Superferromagnetism in mechanically alloyed fcc Fe ₂₃ Cu ₇₇ with bimodal cluster size distribution. Journal of Physics Condensed Matter, 2009, 21, 046003.	0.7	4
51	Biofunctionalized magnetic hydrogel nanospheres of magnetite and \hat{I}^2 -carrageenan. Nanotechnology, 2009, 20, 355602.	1.3	45
52	Effects of pressure on magnetic properties of ferrihydrite antiferromagnetic nanoparticles. Journal of Physics: Conference Series, 2009, 150, 042098.	0.3	1
53	Electro-precipitation of Fe3O4 nanoparticles in ethanol. Journal of Magnetism and Magnetic Materials, 2008, 320, 2311-2315.	1.0	73
54	Polymer encapsulation effects on the magnetism of EuS nanocrystals. Journal of Materials Chemistry, 2008, 18, 4572.	6.7	29

#	Article	IF	Citations
55	Photopatternable Di-ureasilâ-'Zirconium Oxocluster Organicâ-'Inorganic Hybrids As Cost Effective Integrated Optical Substrates. Chemistry of Materials, 2008, 20, 3696-3705.	3.2	44
56	Evidence of random magnetic anisotropy in ferrihydrite nanoparticles based on analysis of statistical distributions. Physical Review B, 2008, 77, .	1.1	23
57	Comment on "Magnetization reversal in europium sulfide nanocrystals―[Appl. Phys. Lett. 89, 222501 (2006)]. Applied Physics Letters, 2008, 92, 026102.	1.5	2
58	A mean-field scaling method for first- and second-order phase transition ferromagnets and its application in magnetocaloric studies. Applied Physics Letters, 2007, 91, .	1.5	64
59	Nanoscopic Photoluminescence Memory as a Fingerprint of Complexity in Self-Assembled Alkyl/Siloxane Hybrids. Advanced Materials, 2007, 19, 341-348.	11.1	101
60	Multiple-length-scale small-angle X-ray scattering analysis on maghemite nanocomposites. Journal of Applied Crystallography, 2007, 40, s696-s700.	1.9	7
61	Surface effects in maghemite nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 312, L5-L9.	1.0	179
62	Structural and magnetic studies in ferrihydrite nanoparticles formed within organic-inorganic hybrid matrices. Journal of Applied Physics, 2006, 100, 054301.	1.1	19
63	Magnetic behavior of iron (III) oxyhydroxy nanoparticles in organic–inorganic hybrid matrices. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 962-965.	1.0	2
64	Synthesis, characterisation and magnetic properties of cobalt (II) complexes with 3-hydroxypicolinic acid (HpicOH): [Co(picOH)2(H2O)2] and mer-[N(CH3)4][Co(picOH)3]·H2O. Polyhedron, 2005, 24, 563-569.	1.0	26
65	Synthesis, characterisation and magnetic properties of copper(II) complexes with 3-hydroxypicolinic acid (HpicOH): the crystal structure of [Cu(picOH)2(BPE)]2·[Cu(picOH)2(BPE)2]·8H2O. Journal of Molecular Structure, 2005, 737, 221-229.	1.8	21
66	Relevance of magnetic moment distribution and scaling law methods to study the magnetic behavior of antiferromagnetic nanoparticles: Application to ferritin. Physical Review B, 2005, 71, .	1.1	87
67	Comment on "Thermoinduced Magnetization in Nanoparticles of Antiferromagnetic Materials― Physical Review Letters, 2005, 94, 039707; author reply 039708.	2.9	18
68	Structure–photoluminescence relationship in Eu(iii) β-diketonate-based organic–inorganic hybrids. Influence of the synthesis method: carboxylic acid solvolysis versus conventional hydrolysis. Journal of Materials Chemistry, 2005, 15, 3117.	6.7	86
69	Matrix assisted formation of ferrihydrite nanoparticles in a siloxane/poly(oxyethylene) nanohybrid. Journal of Materials Chemistry, 2005, 15, 484.	6.7	17
70	Local Structure and Near-Infrared Emission Features of Neodymium-Based Amine Functionalized Organic/Inorganic Hybrids. Journal of Physical Chemistry B, 2005, 109, 20093-20104.	1.2	52
71	Photoluminescence and Quantum Yields of Urea and Urethane Cross-Linked Nanohybrids Derived from Carboxylic Acid Solvolysis. Chemistry of Materials, 2004, 16, 1507-1516.	3.2	100
72	Ferrihydrite antiferromagnetic nanoparticles in a sol–gel derived organic–inorganic matrix. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1549-1550.	1.0	19

#	Article	IF	CITATIONS
73	Effect of presence of an acid catalyst on structure and properties of iron-doped siloxane-polyoxyethylene nanocomposites prepared by sol–gel. Journal of Non-Crystalline Solids, 2004, 345-346, 585-590.	1.5	11
74	Structure of magnetic poly(oxyethylene)–siloxane nanohybrids doped with Felland Felll. Journal of Applied Crystallography, 2003, 36, 961-966.	1.9	10
75	Magnetic properties of Fe-doped organic–inorganic nanohybrids. Journal of Applied Physics, 2003, 93, 6978-6980.	1.1	17
76	Magnetic Sol-Gel Derived Poly(oxyethylene)- Siloxane Nanohybrids. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	1